
Artifacts
2024-05-29

AI Image

What are “calibration” artifacts?
Originally there were just two (since Athena times):

- Field maps (B field of the MARCO solenoid, used in simulation)
- Material maps (material density in the inner tracker, used in reconstruction)

Additional uses for the same system:

- GDML files for the components of the barrel HCal (used in simulation)
- Calibration for ONNX ML example (used in reconstruction)
- PID LUT tables (used in reconstruction)
- Calibration for TMVA ML at low-Q2 tagger (in development for reconstruction)

This is quite a few, they now go to compact/calibrations.xml

https://github.com/eic/epic/blob/main/compact/calibrations.xml

How are they implemented?
FileLoader DD4hep plugin is instantiated either

- directly in <plugins> section

- or in the detector implementation (steered by custom XML)
https://github.com/eic/epic/blob/main/compact/fields/marco.xml

https://github.com/eic/epic/blob/main/compact/calibrations.xml

https://github.com/eic/epic/blob/main/src/FieldMapB.cpp

https://github.com/eic/epic/blob/main/src/FileLoader.cpp
https://github.com/eic/epic/blob/main/compact/fields/marco.xml
https://github.com/eic/epic/blob/main/compact/calibrations.xml
https://github.com/eic/epic/blob/main/src/FieldMapB.cpp

How does this work?
1. npsim or EICrecon loads geometry (e.g. epic_cratelake.xml)
2. For each defined epic FileLoader the instance file is found:

a. In /opt/detector if you are using the container
b. Downloaded from the URL

3. File is placed to <prefix>/<hash> where prefix is usually “calibrations/” and
hash is calculated over the original URL

4. <prefix>/<hash> is symlinked to the final destination <prefix>/<name>
5. Files are loaded from the filesystem by the respective geometry/factory

implementation(s)

What can be improved?
- The occasional bug

FileLoader ERROR unable to link from calibrations/foobar to calibrations/de9b04819a3430af
FileLoader ERROR check permissions and retry

- Shared state in the current working directory (potential for race conditions)

- EICrecon doesn’t know if the file on disk was actually updated by the geometry, or a leftover
(potential consistency issues)

- No way to query information about the calibrations
(machinery that populates /opt/detectors is complicated)

- Using new EICrecon implies that one has to use new geometry
(or factories that can’t find their files would have to self-disable - e.g. missing PID LUTs disable reco particles)

- epic geometry is immutable
(what is the way to deliver calibrations from running material map scans or ML training on CI?)

- Every artifact is processed on each startup even if unused (ugly)

What Are Artifacts?
Config-dependent objects or quantities needed during simulation or reconstruction

● Magnetic field (11 MB MARCO, 4 MB lumi)
● Acts material map (5 MB)
● Calorimeter sampling fractions (4 B)
● Trained machine learning models (2 MB low-Q2)
● PID lookup tables (45 MB)
● …

Typically a ‘calibration’ step (broadly construed) is necessary to determine the
correct artifact to use for a specific ‘run’.

Artifact Distribution Through Geometry
Current approach: geometry distributes artifacts (historically motivated)

● Magnetic field: unique URL with e.g. commit hash in epic-data or wiki (don’t):
https://github.com/eic/epic-data/raw/64b7ca6306b138b7f000e696c82bd8f72d
b1da56/MARCO_v.6.4.1.1.3_1.7T_Magnetic_Field_Map_2022_11_14_rad_c
oords_cm_T.txt (URL hash: 65697e9cb0b6625b, file: fieldmaps/<hash>)

● Caching by URL hash allows storing multiple versions with same filename
○ https://eicweb.phy.anl.gov/EIC/detectors/athena/uploads/6253bfcb92dd6bc236dd9a06084614

ba/material-maps.cbor -> calibrations/657d53d737220c61
○ https://eicweb.phy.anl.gov/EIC/detectors/athena/uploads/77bd16bef5d811f31256279a3601c9

d5/material-maps.cbor -> ??? (old)
● Downloaded when used in geometry by DD4hep plugin (FileLoader)

https://github.com/eic/epic-data/raw/64b7ca6306b138b7f000e696c82bd8f72db1da56/MARCO_v.6.4.1.1.3_1.7T_Magnetic_Field_Map_2022_11_14_rad_coords_cm_T.txt
https://github.com/eic/epic-data/raw/64b7ca6306b138b7f000e696c82bd8f72db1da56/MARCO_v.6.4.1.1.3_1.7T_Magnetic_Field_Map_2022_11_14_rad_coords_cm_T.txt
https://github.com/eic/epic-data/raw/64b7ca6306b138b7f000e696c82bd8f72db1da56/MARCO_v.6.4.1.1.3_1.7T_Magnetic_Field_Map_2022_11_14_rad_coords_cm_T.txt
https://eicweb.phy.anl.gov/EIC/detectors/athena/uploads/6253bfcb92dd6bc236dd9a06084614ba/material-maps.cbor
https://eicweb.phy.anl.gov/EIC/detectors/athena/uploads/6253bfcb92dd6bc236dd9a06084614ba/material-maps.cbor
https://eicweb.phy.anl.gov/EIC/detectors/athena/uploads/77bd16bef5d811f31256279a3601c9d5/material-maps.cbor
https://eicweb.phy.anl.gov/EIC/detectors/athena/uploads/77bd16bef5d811f31256279a3601c9d5/material-maps.cbor

Artifact Distribution Through Geometry: Drawbacks
● Not all artifacts are tightly coupled to geometry changes; e.g.

epic/compact/calibrations.xml contains all PID LUT definitions, as well as
some ONNX and TMVA files…

● ‘Calibrations’ artifacts often require geometry to determine. Workflow:
○ Geometry is tagged and released.
○ ‘Calibration’ is run to determine artifacts (cf. calibration turnaround time discussions).
○ Reconstruction proceeds with ‘calibration’ artifacts.

Conclusion: need an independent way to distribution calibration artifacts, which
does not require editing the geometry but allows referencing it.

Storing URI references to permanent(!) storage instead of storing the large objects
is workable solution. Allow filesystem (incl. cvmfs) cache for O(10k) jobs at once.

https://github.com/eic/epic/blob/main/compact/calibrations.xml

HSF Conditions DB White Paper
“A global tag [GT] is the top-level configuration of all conditions data. For a given
payload type and a given interval of validity [IOV], a global tag will resolve to
one, and only one, conditions data payload. The Global Tag resolves to a
particular payload type Tag via the Global Tag Map table. A payload type Tag
consists of many non-overlapping intervals of validity or entries in the IOV table.
Finally, each entry in the IOV table maps to a payload via its unique hash key in
the Payload table.”

Separation of storing the object from storing reference to the object: e.g. can store
entire database as sqlite and ship with jobs.

Ref: https://arxiv.org/pdf/1901.05429

https://arxiv.org/pdf/1901.05429

HSF Conditions DB Reference Implementation

Ref: https://indico.cern.ch/event/1343984/timetable/?view=standard#48-towards-an-hsf-reference-im

https://indico.cern.ch/event/1343984/timetable/?view=standard#48-towards-an-hsf-reference-im

HSF Conditions DB Reference Implementation
Spin up DB implementation:

git clone https://github.com/BNLNPPS/nopayloaddb

cd nopayloaddb

docker compose up -d

Test the DB implementation:

git clone https://github.com/BNLNPPS/nopayloadclient

eic-shell> cli_npc

(needs NOPAYLOADCLIENT_CONF)

cli_npc checkConnection

cli_npc createGlobalTag example_gt

https://github.com/BNLNPPS/nopayloaddb
https://github.com/BNLNPPS/nopayloadclient

HSF Conditions DB Reference Implementation
EICrecon #1428

#include <nopayloadclient/nopayloadclient.hpp>

Payload_service::Payload_service(JApplication *app)

: m_client("EICrecon") {

 m_application = app;

}

CI spins up nopayloaddb test instance for testing

https://github.com/eic/EICrecon/pull/1428

Summary
We are alreading using URIs to locate artifacts.

We have a vision (HSF Conditions DB White Paper).

We have an implementation (HSF Conditions DB Reference Implementation).

We have a testing platform (EICrecon #1428).

We do still need permanent storage (Rucio?).

