

Prafull Purohit, Soumyajit Mandal, Grzegorz Deptuch

- Serial powering has been selected as the powering scheme for ePIC SVT outer barrel & disks
- Current-based powering scheme
 - module are powered in series by a constant current
- Each module is at a different ground potential inside the chain
 - needs separate substrate bias for each module

Ancillary ASIC

Readout / Control

Ancillary ASIC

LAS

- MOSFET-based charge-pump circuit
- Dickson-style
 - RF signal is fed in parallel
 - DC voltage across each capacitor equals V_{OUT} , limiting the maximum output voltage.
 - Output impedance increases less rapidly since the capacitors are in parallel.

Specification	Value
Voltage range	0 to -6 V
Current capacity	1 mA
Voltage ripple	< 0.1 mV

Dickson charge pump

- Simple ring VCO using current-starved inverters to adjust the RF drive frequency
- Allows the oscillation frequency range to be adjusted to ensure a monotonic response

• Input

- Enable/Pause
- Coarse digital control + fine analog control
- Output
 - RF clock (100 800 MHz, 1.2V)

Voltage Controlled Oscillator \longrightarrow RF Driver \longrightarrow Charge Pump \longrightarrow V_{NEG}

- Provides sufficient drive strength to distribute RF clock across the charge-pump
- RF driver split into 16 identical branches
 - Provides coarse control over output voltage
 - Reduces the required control range of the feedback loop

- Input
 - 4-bit control (thermometer coded)
 - RF clock (100 800 MHz, 1.2V)
- Output
 - RF clock (100 800 MHz, 1.2V)

Voltage Controlled Oscillator \longrightarrow RF Driver \longrightarrow Charge Pump \longrightarrow V_{NEG}

- Four-transistor charge-pump cell
- DC output signal builds up between VL and VH
- RF signal injected between RFn and RFp
- Deep trench isolation (DTI) allows the negative output voltage (V_L) to go below the substrate potential
- Auxiliary diode between V_L and V_H ensures initial start-up

BUT, how to control the output?

We need to make sure V_{NEG} is equal to the desired PSUB voltage

(with feedback control)

Brookhaven⁻ National Laboratory Blocks planned for September 2024 fabrication run

- Open-loop simulation
- RF frequency = 500 MHz Chosen to keep pump capacitor size reasonable
- Load current = 200 µA
- SC Clock Frequency = 1 MHz

 $V_{OFF} = I_{OFF}R_{FB} \approx 43 \text{ mV}$

Closed-loop simulation

Completed preliminary simulations of the conceptual design

- Closed-loop simulation
- Drive strength = 2, V_{REF} = 3 x (3/20) V = 0.45 V, should produce -3V

- Closed-loop simulation
- Drive strength = 4, V_{REF} = 4 x (3/20) V = 0.6 V, should produce -4V

- Layout design
- Started layout for September submission
 - Finished initial layout of the charge-pump cell
 - DRC, LVS clean
 - Working on extracted simulations

Next Steps

- Obtain a more realistic estimate of the output load and capacitance, and optimize the design accordingly.
- Complete a trial layout and evaluate impact of layout parasitics.
 - Use TMR within digital blocks to improve radiation hardness.
- Evaluate alternate feedback mechanism using RF duty cycle
- Perform corner and Monte Carlo simulations
 - Document results for design hand-off

Required Design Efforts!

- Preliminary design ready
 - Two designers and one layout engineer working on NVG
 - Blocks needed for open-loop voltage regulation will be taped-out in September 2024
- Lot of work still needed on detailed simulation / layout design
 - Support for two people in FY25 is critical for on-time design completion
 - More is always better 🙂

Thank you!