EIC HRPPD evaluation @ BNL

Alexander Kiselev (BNL)

eRD110 meeting, June 5, 2024

EIC HRPPD assembly

standa

Charge path: (1) vacuum side anode pads -> anode plane stackup -> air side pads -> compression interposers -> (2) interface PCB -> MMCX adapter PCB -> pigtail RG-316 (?) cables -> 6" RG-174 cables -> V1742 digitizer

Cross-talk evidence

HRPPD passive interface PCB (Y05f)

> A simple 119mm x 119mm two-layer board with Samtec ERF8 connectors

Picture gallery

Anode plate vacuum side

With MMCX interface

Anode plate air side

Fused silica window

With Y05f board mounted

MMCX -> MCX pigtail cables

Crosstalk signature (SPE)

These four pads are neighbors on a Samtec ERF8 connector

Waveforms (single event): bottom half of one 8x8 pixel field

Electronics channel routing of a single 4x8 pad area

Channel numbering 00 .. 31 as connected to a single V1742 digitizer

15	07	G	14	06	13	05	G	12	04	11	03	G	10	02	09	01	G	08	00
31	23	G	30	22	29	21	G	28	20	27	19	G	26	18	25	17	G	24	16

Samtec ERF8 / ERM8 connector pinout

Neighbor on the vacuum side anode surface

Physical HRPPD pad map (bottom half of one of the sixteen 8x8 pad spots, as seen on the previous slide)

Mitigation strategy

Our options [for a passive interface]

- Verify that origin of this cross-talk is the backplane PCB
 - (1) Make sure there is no such cross talk in the old HRPPD
 #6 with MCX connectivity in its P00i backplane
 - (2) Optionally, make sure there is one when connecting via Samtec MEC8 DV interface, which should suffer from the same problem
 - (3) Alternatively, use HRPPD #6 as a reference pulse generator, and pass the signal through a Y05f board without connecting it to HRPPD #15 (or even through a MMCX-Y05finterposer-Y05f-MMCX sandwich assembly)
- Choose a different type of connector, re-design the interface board & the cable bundle; order ten sets new
 - > See what's up with the HGCROC backplane design
- If cross-talk is due to a routing in the EIC HRPPD anode plate itself, then we have a much bigger problem

Connector choice criteria

- Reliable manufacturer
- Either enough pins to make at least half of them grounded, or a grounding plane, or both
 Minimal insertion (and extraction!) force
- Simple routing of both the interface board itself and the MCX (MMCX) adapters
- Cost (and associated variety & cost of the MCX / MMCX adapter boards)
- > Minimal warping on the PCB after the assembly

In the following it is assumed that a cable bundle is attached to a subset of these connectors, to provide a *partial* connectivity to V1742 module(s)

Samtec ERF8-020-05.0-L-DV (present Y05f board)

- ≻ 800 µm pitch
- Insertion "force": 80 pins per 8x8 pad spot
- ➤ 32x ~\$5.0 -> ~\$150 / board

Pros

- It exists (together with a 32ch MMCX interface) and must be sufficient for single photon studies
- > 180^o symmetry in every 8x8 pad spot
 - Simplifies a passive interface design [?]

Cons

[Hopefully], lack of ground pins is the X-talk origin

A note on Photek Auratek MAPMT253 backplane

- It uses pretty much the same ERF8-040-05.0-L-DV Samtec connectors
- Pad traces are grouped by four, without interleaved ground ones
 - May exhibit the same cross talk as we observe with the present HRPPD backplane

A note on Photonis Planacon interface

2" MCP-PMT; 8x8 pads

Interface board: sensor side

Interface board: outer side

- Photonis backplane has a pair of Samtec QRM8-052-* connectors
 - And a bunch of active components
- A separate interface board is of a straightforward two-layer design (has Samtec QRF8-052-05.0-L-D-A connectors on one side and TMMH-116-01-L-DV-LC ones on the other side)
 - TMMH: 2mm pitch; 2x16 pins per connector; Signal & Ground pins in a chessboard fashion

Samtec ERF5-020-05.0-L-DV

 S
 G
 S
 G
 S
 G
 S
 G
 S
 G
 S
 G
 S
 ...

 single
 connector
 pinout
 G
 S
 G
 S
 G
 S
 G
 S
 ...

- ≻ 500 µm pitch
- Insertion "force": 160 pins per 8x8 pad spot
- > 64x @ ~\$3.0 -> ~\$200 / board
- Pros
 - \blacktriangleright A bit more compact than 800 μm options
 - > 90^o symmetry in every 8x8 pad spot
 - Simplest possible interface design (4x4 16ch MCX connectors on a 25mm x 25mm mini-PCB in every 8x8 pad spot); fully tilable

Cons

No ground plane

Samtec QRF8-026-05.0-L-D-A #1

single connector pinout

- > 800 µm pitch
- Insertion "force": 156 pins per 8x8 pad spot
 - And ground plane contacts
- ≻ 48x @ ~\$9.0 -> ~\$450 / board
- Pros
 - Ground plane

- > No rotation symmetry in an 8x8 pad spot
 - Either MMCX (or especially MCX) interface will be of a nasty design; for sure not tilable
 - Two types of 32ch MMCX adapters will likely be needed (and even more for MCX version)

Samtec QRF8-026-05.0-L-D-A #2 (less connectors)

single connector pinout

- > 800 µm pitch
- Insertion "force": 130 pins per 8x8 pad spot
 - And ground plane contacts
- > 40x @ ~\$9.0 -> ~\$350 / board
- Pros
 - Ground plane

- ➢ Will have to use 8x16 pad interface PCBs
 - Worst possible option for routing
 - Four different types of tilable 32ch MMCX adapters

Samtec QRF8-052-05.0-L-D-A

- ≻ 800 µm pitch
- Insertion "force": 156 pins per 8x8 pad spot
 - And ground plane contacts
- > 24x @ ~\$11.0 -> ~\$250 / board
- Pros
 - Ground plane

- ➢ Will have to use 8x16 pad interface PCBs
 - Routing is probably OK
 - Four different types of tilable 32ch MMCX adapters
- A bit too long (PCB warping?)

Samtec SEAF8-40-05.0-S-08-3

These ones are used on Xilinx KCU105 FPGA kit (?)

single connector pinout

- ➤ 800 µm pitch
- Insertion "force": 160 pins per 8x8 pad spot
- > 8x @ ~\$45.0 -> ~\$350 / board
- Pros
 - Compact

- Will have to use 8x16 pad interface PCBs
 - Routing is probably OK
 - Four different types of 32ch MMCX tilable adapters
- Looks like worst possible family for X-talk (?)
- ➢ Not available on stock (?)

Samtec SEAF8-20-05.0-S-08-3

single connector pinout

- ≻ 800 µm pitch
- > Insertion "force": 160 pins per 8x8 pad spot
- ▶ 16x @ ~\$15.0 -> ~\$250 / board
- > Pros
 - Compact
- Cons
 - May consider 8x8 pad interface PCBs?
 - Routing is probably OK
 - Two different types of 32ch MMCX tilable adapters
 - Looks like worst possible family for X-talk (?)

Samtec SEAF8-20-05.0-S-04-3

single connector pinout

- ≻ 800 µm pitch
- Insertion "force": 160 pins per 8x8 pad spot
- > 32x @ ~\$10.0 -> ~\$300 / board
- Pros
 - Compact

- May consider 8x8 pad interface PCBs?
 - Routing is probably OK
 - 180^o rotation symmetry -> two different types of 16ch MCX tilable adapters possible
- Looks like worst possible family for X-talk (?) 21

Hirose FX10A-140S/14-SV

connector

 \geq 500 µm pitch

single

pinout

- > Insertion "force": 140 pins per 8x8 pad spot
- ➤ 16x @ ~\$6.0 -> ~\$100 / board (interposers?)
- > Pros
 - Floating ground interposer design (next slide)

> Cons

- 16x8 pad interface PCBs \succ
 - Routing is probably OK \geq
 - 180⁰ rotation symmetry -> two different types of 32ch \geq MMCX tilable adapters

Hirose FX10A-140S/14-SV

With GND Plate Type

Mechanical Features

- 0.5mm Pitch
- Stacking height : 4 to 8mm (2-piece type) 8 to 13mm (3-piece type)
- Number of Contacts

With ground plate : 80 / 100 / 120 / 140 Without ground plate : 96 / 120 / 144 / 168 3-piece interposer : 120 / 144 / 168

• OIF MSA-100GLH Electrical Interface

FX10A-168P/S-SV(83) assembly is specified for the OIF 100G Long-Haul DWDM Transmission Module host line card - MSA-100GLH electrical connector.

OIF OPTICAL INTERNETWORKING FORUM

Suited to High-Density Applications

The 0.5 mm signal contact pitch provides a smaller overall connector, using less mounting area on the board.

Optional Ground Plate

An alternate style without the ground plate is available. The space provided by the ground plate removal has been filled with additional signal contacts. <3-piece type>

- •Smooth floating with high speed transmission capability supported by unique 3-piece floating system
- •Multiple connectors are allowed on the same PCB (Allowable Mis-alignment Range : ± 0.3mm in XY direction)

Any experience in the community?