

Beam-induced target depolarization at RHIC and EIC

Frank Rathmann

July 3, 2024

Beam-induced target depolarization at RHIC and EIC

Frank Rathmann (frathmann@bnl.gov)

Contents

Introduction

RHIC

- Bunch structure
- Zeeman splitting of hydrogen
- Single bunch distribution
- Gaussian convoluted with series of delta functions
- Radio-frequency fields produced
- Bunch-induced depolarization of target atoms

3 EIC

- Bunch structure at EIC
- Gaussian convoluted with series of delta functions
- Radiofrequency fields produced
- Bunch-induced depolarization of target atoms

Conclusion and Outlook

Introduction

- Development of polarized hydrogen jet (HJET) for RHIC finished 20 yrs ago.
- Many details on the technical structure and operation cannot be found in the literature, and there is also no comprehensive publication.
- Hardly anyone around to ask:
 - Tom Wise send me some unfinished paper drafts and other material.
 - I am in touch with Alexander Nass about BRP operation and most recent BRP measurement (from 2004).

• Today's item:

- 1. Beam-induced depolarization of target atoms
 - Bunch repetition frequency will be much larger at EIC than at RHIC
 - Goal: Understand corresponding situation at EIC

Bunch structure

RHIC situation:

- Time period between two adjacent bunches: $\tau_{\rm b} = \frac{\tau_{\rm rev}}{N_{\rm b}} = 106.57\,{\rm ns}$
- Number of stored bunches $N_b = 120$
- Bunch frequency $f_{\rm b} = \frac{1}{\tau_{\rm b}} = 9.3831 \, {\rm MHz}$
- Large number of harmonics contribute to induced magnetic high-frequency field close to RHIC beam, as bunches are short ($\sigma_t = 0.5 \text{ ns}$)

Hyperfine states of hydrogen

Critical field B_c (slide 23)

- Zeeman energy $g_J \mu_B B$ comparable to $E_{\rm hfs}$
- $E_{\rm hfs} \approx 5.874 \times 10^{-6} \, {\rm eV}$ ($\approx 1420 \, {\rm MHz} \, [1]$):

•
$$B_c = 50.7 \, \text{mT}$$

Transition frequencies

• Transition frequency between two hyperfine states $|i\rangle$ and $|j\rangle$ given by:

$$f_{ij} = \frac{E_{|i\rangle}(B) - E_{|j\rangle}(B)}{h}$$
(1)

• When *f_{ij}* matches one of the beam harmonics at a certain holding field *B*, resonant depolarization occurs [2].

Single bunch distribution

• (Gaussian) bunch in RHIC

Single Gaussian bunch, RHIC nominal conditions

RHIC

Pulse shape described by

$$f(t) = \frac{Q}{\sqrt{2\pi\sigma_t}} \exp\left(-\frac{t^2}{2\sigma_t^2}\right)$$
(2)

Gaussian convoluted with (finite) series of delta functions

Total beam current as function of time t given by

$$I(t) = \int_{-\infty}^{\infty} f(t-\xi) \sum_{k=-\infty}^{\infty} \delta\left(\xi - k \frac{\tau_{\text{rev}}}{N_{\text{b}}}\right) \mathrm{d}\xi$$
(3)

Radiofrequency-fields

FFT of convolution

• Two-sided amplitude spectrum of FFT of the convolution

Radio-frequency fields produced

Produced radio-frequency fields

- Single-sided amplitude spectrum of FFT
- *x*-axis converted to frequency

Amplitudes of magnetic RF fields

- Same, but logy
- \bullet FFT background $\leq 1\%$
 - not at f_{rev}
 - not from finite set of δ fcts
 - \rightarrow probably numerical from FFT

Transition frequencies between hyperfine states of H

Based on Zeeman splitting, shown on slide 5, using Eq. (1)

- Determine transition frequencies f_{ij} between hyperfine states $|i\rangle$ and $|j\rangle$.
- Cclassification refers to change of quantum numbers (see Ramsey [3]):
 - B_0 is static field, B_1 is RF field that exerts torque on magnetic moment μ :
 - π ($B_1 \perp B_0$) transitions within one F multiplet:

$$\Delta F = 0, \quad \Delta m_F = \pm 1. \tag{4}$$

- σ ($B_1 \parallel B_0$) transitions between different F multiplets:

$$\Delta F = \pm 1, \quad \Delta m_F = 0, \pm 1. \tag{5}$$

- Single photon transitions in H: f_{12}^{π} , f_{23}^{π} , f_{14}^{σ} , f_{24}^{σ} , and f_{34}^{σ} .
- Transition $f_{13}^{2\gamma}$ with $\Delta m_F = 2$ requires two photons.

Transition frequencies between hyperfine states of H

Hydrogen hyperfine transitions from bunch fields

Depolarization when f_{ij} multiple of bunch frequency f_b^{RHIC}

- HJET injects states $|1
 angle+|4
 angle~(p^{\uparrow})$ and $|2
 angle+|3
 angle~(p^{\downarrow}).$
 - What is actual orientation of B^{HJET} ?

•
$$\left| \frac{f_{ij}}{f_b^{\text{RHIC}}} - n \right| \le 0.002, n \in \mathbb{N}$$

• Same $m_I \Rightarrow f_{14}^{\sigma}, f_{23}^{\pi}$ omitted

Beam-induced target depolarization at RHIC and EIC

Bunch structure

EIC situation:

- Time period between two adjacent bunches: $\tau_{\rm b} = \frac{\tau_{\rm rev}}{N_{\rm b}} = 10.85\,{\rm ns}$
- Number of stored bunches $N_b = 1180$
- Bunch frequency $f_{\rm b} = \frac{1}{\tau_{\rm b}} = 92.2081 \, {\rm MHz}$

Gaussian convoluted with (finite) series of delta functions

Total beam current as function of time t given by

$$I(t) = \int_{-\infty}^{\infty} f(t-\xi) \sum_{k=-\infty}^{\infty} \delta\left(\xi - k \frac{\tau_{\text{rev}}}{N_{\text{b}}}\right) \mathrm{d}\xi$$
(6)

Produced radio-frequency fields

• Single-sided amplitude spectrum of FFT

Frank Rathmann (frathmann@bnl.gov)

Amplitudes of radio-frequency fields

- RF field amplitudes at EIC $\approx 10 \times$ larger compared to RHIC \Rightarrow increased transition probability due more photons $(n_{\gamma} \propto B^2)$.
- Frequency spacing in spectrum will become much larger
 ⇒ fewer contributing resonances.

Hydrogen hyperfine transitions from bunch fields

Depolarization occurs when $\left| \frac{f_{ij}}{f_{c}^{EIC}} - n \right| \le 0.002, n \in \mathbb{N}$

• For $B < 200 \,\mathrm{mT}$, all transitions below harmonic number 50 will contribute!

Beam-induced target depolarization at RHIC and EIC

Frank Rathmann (frathmann@bnl.gov)

Hydrogen hyperfine transitions from bunch fields

How about the small B region?

- At RHIC, this region was inaccessible, as spacing of $f_{13}^{2\gamma} \approx 0.3 \,\mathrm{mT}$.
- At EIC, at \approx 5 mT, spacing is of $f_{13}^{2\gamma} \approx 3.3$ mT.

Conclusion and outlook

Conclusion

- Depolarization:
 - RHIC: harmonic numbers > 100 were ignored.
 - EIC: All depolarization transitions of H appear at harmonic numbers < 50.
 - $\bullet\,$ EIC: If we stay in 120 mT region, field accuracy $\lesssim 1\,mT$ required.
 - Contrary to situation at RHIC, smaller B may be an option for EIC.
- Extend study of beam-induced depolarization to D and ³He atoms.

Outlook: Other things that need to be looked into

- 1. How does beam-induced \vec{B} field affect target polarization? \rightarrow in progress
- 2. Zero-crossings along the vertical axis of the source.
 - Revisit magnetic field calculations of HJET holding field \rightarrow in progress.
- 3. Polarization measurements with all transition units in ABS and BRP.
- 4. Tracking of atoms in HJET & sextupole magnet systems
 - Recuperated tracking code used for HJET design from Michelle/Paolo
 - \rightarrow to make it work is time consuming

References I

- [1] M. Diermaier et al., Nature Commun. 8, 5749 (2017).
- [2] A. Airapetian et al., Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 540, 68 (2005).
- [3] N. Ramsey, *Molecular Beams*, Oxford University Press, 1956.

Spare slides

Critical field for hydrogen hyperfine splitting I

Zeeman region:

- magnetic flux density at which energy separation between different hyperfine levels becomes comparable to Zeeman splitting.
- referred to as critical magnetic field or Breit-Rabi field B_c
- Breit-Rabi formula (energy levels of hydrogen atom in external magnetic field:

$$E_{F,m_F} = -\frac{E_{\rm hfs}}{2(2I+1)} + g_J \mu_B m_J B \pm \frac{E_{\rm hfs}}{2} \sqrt{1 + \frac{2m_F x}{F} + x^2}$$
, where (7)

- $E_{\rm hfs}$ is hyperfine splitting energy
- *I* is nuclear spin (for H, $I = \frac{1}{2}$)
- g_J is Landé g-factor
- μ_B is Bohr magneton
- *m_J* is magnetic quantum number

m_F is total angular momentum quantum number

$$-x = \frac{g_J \mu_B B}{E_{\rm hfs}}$$

- F = I + J is total angular momentum (for H, $J = \frac{1}{2}$)

Critical field for hydrogen hyperfine splitting II

For H:

• hyperfine splitting energy $E_{\rm hfs}$ (1420 MHz):

$$E_{
m hfs} pprox 5.874 imes 10^{-6} \, {
m eV}$$
 (8)

• Critical field B_c is when Zeeman energy $g_J \mu_B B$ is comparable to $E_{\rm hfs}$. With $g_J \mu_B B_c \approx E_{\rm hfs}$, we get:

$$B_c \approx \frac{E_{\rm hfs}}{g_J \mu_B} \tag{9}$$

• For H, $g_J \approx 2$ (approximately for electron), and $\mu_B \approx 5.788 \times 10^{-5} \, {\rm eV/T}$. Thus,

$$B_c \approx \frac{5.874 \times 10^{-6} \,\mathrm{eV}}{2 \times 5.788 \times 10^{-5} \,\mathrm{eV}/\mathrm{T}} \approx 50.7 \,\mathrm{mT} \tag{10}$$