Overview of the new benchmark

Aug 13 (Tue) Minho Kim

Items to be checked/presented by the benchmark

- Beam information.
- Whether the shower is well developed in the detector.
- BIC performances.
- Basic studies using BIC.

Beam information

 θ vs ϕ and η vs Mom. Distributions show us the beam energy and how the beam spreads out.

•

Shower development (ScFiRecHits)

The energy deposit-weighted sector vs layer and x_hit vs y_hit distributions show that the EM shower was well developed in both ScFi and imaging layers.

Shower development (ImagingRecHits)

The energy deposit-weighted sector vs layer and x_hit vs y_hit distributions show that the EM shower was well developed in both ScFi and imaging layers.

Energy resolution plots (ScFiRecHits)

- Energy distributions reconstructed by the ScFi layers will be saved for each η range.
- Energy resolution as a function of η will also be saved.

E_{reconstructed} / **E**_{true}

Fraction to true energy will also be saved. These quantities could be related to a sampling fraction or calibration parameters to be updated.

•

Energy resolution plots (ImagingRecHits)

Energy distributions reconstructed by the imaging layers will be saved for each η range as a reference.

.

Angle resolution plots (θ)

- The θ difference distribution has a right-side tail due to the magnetic field. The shower particles experience forces to $\pm x$ directions. \rightarrow Makes the θ_{rec} smaller.
- The distribution was fitted by a superposition of two Gaussians.

Angle resolution plots (θ)

- The θ difference distribution has a right-side tail due to the magnetic field. The shower particles experience forces to $\pm x$ directions. \rightarrow Makes the θ_{rec} smaller.
- The distribution was fitted by a superposition of two Gaussians.
- If the maximum energy deposit hit is used, the θ resolution is greatly improved, but just a maximum energy deposit makes the number of bad events increase.

Angle resolution plots (φ)

- The electron distribution has an offset due to the magnetic field.
- The shower particles experience forces to the $\pm x$ directions. \rightarrow Makes the ϕ_{rec} smeared. Therefore, there is no right-side tail.

Angle resolution plots (φ)

• We can see the effect of the magnetic field from the η vs $\Delta \phi$ plots.

Angle resolution plots (φ)

- Because the ϕ reconstructed by the maximum energy deposit hit has no smearing, the ϕ difference distribution doesn't follow the Gaussian.
- It might be better not to include the ϕ difference distribution obtained by the Max. energy deposit hit or better to just include the 2-dimensional one.

e/π separation plots

- E/p distributions of e and π will be plotted with a dashed threshold line that makes the e efficiency higher than 95%.
- Fraction of the survived π will also be presented as a function of η .

Multiplicity

As an example of the basic quantities studied by the BIC, we can compare the number of hits on the ScFi layers between the single particle and DIS.

.

Codes to be added

emcal_barrel_single_particle_energy.cxx emcal_barrel_single_particle_angle.cxx emcal_barrel_epi_sepration.cxx emcal_barrel_multiplicity.cxx