BIC Simulation Meeting

BIC SciFi/Pb Simulation Updates

Maria Zurek

Input: Attenuation Measurement

Measured attenuation dependencies for different naked fibers measured

$$I(\Delta) = I_0(\alpha e^{\Delta/\lambda_1} + (1 - \alpha)e^{\Delta/\lambda_2})$$

	I ₀	α	λ ₁ [cm]	λ ₂ [cm]
Kuraray Single Clad	9.29E+01	4.16E-01	7.47E+01	7.52E+02
Kuraray Double Clad (New)	1.35E+02	3.06E-01	5.82E+01	7.23E+02
Luxium Single Clad	7.43E+01	4.23E-01	3.92E+01	4.91E+02
GlueX Kuraray Double Clad	1.37E+02	1.81E-01	6.09E+01	4.18E+02

Input: Flat (Old) Optical Connection Improvement

N of phe/GeV for different fiber types

- Nb of photelectrons/GeV corrected for attenuation from Baby BCal Hall D measurement [phe/GeV]: 1100
 - Improvement factor from new family SiPMs from improvement in PDE: 1.5
 - Improvement factor from optical connection: 1.16
 - Attenuation dependence from Old Kuraray Fiber (GlueX Double Clad) anchored to 1914 phe/GeV at d = 0 cm

Input: Realistic (New) Optical Connection Improvement

- Nphe/GeV has been extracted from Baby BCAL measurement with electron shower
 - It means that the effective number of phe/GeV = 1100 phe/GeV has folded in the efficiencies of light guides (LG) that the measurement has been done with
 - Since the number has been extracted from electron showers, different layers (and LG efficiencies) contributed with different weights to this number following the shower profile
 - Effective number of phe/GeV with folded LG efficiencies depends on layer number (because LG efficiencies differ with layers)
 - Optical Connection improvement factor also depends on the layer

LG efficiencies from Tegan and weighted average with electron shower weights

Electron shower profile weights

Input: Realistic (New) Optical Connection Improvement

To calculate the layer-dependent improvement factors

- Take simulated LG efficiencies for Baby BCAL (2 scenarios: old (Geant3, Elton), new (Geant4, Tegan)
- Calculate weighted LG efficiency with electron shower weights that the 1100 phe/GeV has been effectively measured with
 - new (Geant4, Tegan): 0.565, old (Geant3, Elton): 0.648
- Calculate relative improvement factor for every BIC layer wrt the weighted average from the point above
 - This gives effective nphe/GeV dependence for each layer

New Improvement factor

Relative Improvement factor to the old one (1.16)

Input: Flat (Old) Optical Connection Improvement

Nb of photelectrons/GeV corrected for attenuation from Baby BCal Hall D measurement [phe/GeV]: 1100

improvement factor for LG efficiency for every layer

 Geant3 LG efficiencies used (conservative choice)

Improvement factor from new family SiPMs from improvement in PDE: **1.5**

Nphe

Old GlueX fiber

Luxium fiber

Double Clad Kuraray fiber

Single Clad Kuraray fiber

Note: This is MPV position (we need to cut below to register the whole MIP peak)

- L Luxium
- GX Old GlueX
- NKS Kuraray Single
- NKD Kuraray Double

Old GlueX fiber

Nphe

Number of Photoelectrons for L - Raw

Luxium fiber

Number of Photoelectrons for NKD - Raw

Double Clad Kuraray fiber

Number of Photoelectrons for NKS - Raw

Single Clad Kuraray fiber

Backup

Photoelectron statistics

From our 2023 Hall D tests using GlueX SiPMs and double-clad Kuraray fibers: **1000 phe/GeV** per side for showers at the center of the Baby BCAL prototype

Corrected for attenuation: 1100 phe/GeV* per side

We can scale these results for the ePIC Barrel ECal*:

- x 1.5 factor improvement in SiPM photon detection efficiency
- x 1.16 factor to account for **better optical coupling**
- x 0.69 reduction accounting for **single-clad** Kuraray fibers

This gives ~ **1239 phe/GeV** per side (fully corrected for attenuation)

- 10 GeV γ at η ~ -1.7: 5560 phe \rightarrow 9.8 % max SiPM occupancy
- 19 GeV e^- at $\eta \sim -1.7$: 9181 phe \rightarrow 16.1 % max SiPM occupancy
- 50 GeV e⁻ at η ~ 1.4 (most extreme case): 17456 phe \rightarrow 30.1% max SiPM occupancy

Well below the region where large nonlinearities in the SiPM response are expected in almost all cases.

Small non-linear effects possible for some ultra-high energy electrons, which is acceptable (e- π separation straightforward).

* See backup slide for the attenuation length measurement and extraction of those factors

2023 Hall D, Baby BCal, 3.9 GeV e⁺

Fig. 16. The number of photoelectrons per GeV per end of the BCAL module is shown as a function of energy. A one parameter fit is plotted (dashed line). For more details see the text.