BIC Simulation Meeting

BIC SciFi/Pb Simulation Updates

Maria Zurek

Input: Attenuation Measurement

Measured attenuation dependencies for different naked fibers measured

$$
I(\Delta) = I_0(\alpha e^{\Delta/\lambda_1} + (1 - \alpha)e^{\Delta/\lambda_2})
$$

From measurements at Uni Regina

Input: Flat (Old) Optical Connection Improvement

N of phe/GeV for different fiber types

- Nb of photelectrons/GeV corrected for attenuation from Baby BCal Hall D measurement [phe/GeV]: **1100**
	- Improvement factor from new family SiPMs from improvement in PDE: **1.5**
	- **Improvement factor from optical connection: 1.16**
	- Attenuation dependence from Old Kuraray Fiber (GlueX Double Clad) anchored to 1914 phe/GeV at $d = 0$ cm

Input: Realistic (New) Optical Connection Improvement

Nphe/GeV has been extracted from Baby BCAL measurement with electron shower

- It means that the effective number of phe/GeV = 1100 phe/GeV has **folded in the efficiencies of light guides (LG)** that the measurement has been done with
- Since the number has been **extracted from electron showers**, **different layers (and LG efficiencies) contributed with different weights to this number** following the shower profile
- **Effective number of phe/GeV** with folded LG efficiencies **depends on layer number** (because LG efficiencies differ with layers)

 $0.1\,$

2

• Optical Connection improvement factor also depends on the layer

LG efficiencies from Tegan and weighted average with electron shower weights

Layer

Electron shower profile weights

4

10

8

Input: Realistic (New) Optical Connection Improvement

To calculate the layer-dependent improvement factors

- Take simulated LG efficiencies for Baby BCAL (2 scenarios: old (Geant3, Elton), new (Geant4, Tegan)
- Calculate weighted LG efficiency with electron shower weights that the 1100 phe/GeV has been effectively measured with
	- **– new (Geant4, Tegan): 0.565, old (Geant3, Elton): 0.648**
- Calculate relative improvement factor for every BIC layer wrt the weighted average from the point above
	- This gives effective nphe/GeV dependence for each layer

New Improvement factor Relative Improvement factor to the old one (1.16)

Input: Flat (Old) Optical Connection Improvement

Nb of photelectrons/GeV corrected for attenuation from Baby BCal Hall D measurement [phe/GeV]: **1100**

improvement factor for LG efficiency for every layer

Geant3 LG efficiencies used (conservative choice)

Improvement factor from new family SiPMs from improvement in PDE: **1.5**

Number of Photoelectrons for GX - Raw

4000

 200

son.

2000

noor

4000

Layer 3

÷ $\overline{\mathcal{P}}$ 40

 $20 30$ 40

Nohe

Layer 9

Nobe

Lavor 12

Nobe

Layer 6

mphe e-going end (raw)

nphe p-going end (raw

Max Bin e-going end

Max Bin p-going end

note e-going end (raw

nphe p-going end (raw

Max Bin e-going end

Max Bin p-going end

nphe e-going end (raw)

nphe p-going end (raw)

Max Bin e-going end

Max Bin p-going end

nphe e-going end (raw)

nohe p-going end (raw

Max Bin e-going end

Max Bin p-going end

 $\frac{1}{20}$

Number of Photoelectrons for L - Raw

Luxium fiber

Number of Photoelectrons for NKD - Poisson

Number of Photoelectrons for NKD - Raw

Double Clad Kuraray fiber

Nohe

Nphe

Nphe

Number of Photoelectrons for NKS - Poisson

Number of Photoelectrons for NKS - Raw

Single Clad Kuraray fiber

Note: This is MPV position (we need to cut below to register the whole MIP peak)

- L Luxium
- GX Old **GlueX**
- NKS Kuraray Single
- NKD Kuraray Double

Number of Photoelectrons for GX - Poisson

Number of Photoelectrons for GX - Raw

Old GlueX fiber

Nphe

Number of Photoelectrons for L - Poisson

Nphe

Nphe

Number of Photoelectrons for L - Raw

Layer 2

Laver₁

Laver 3

Nobe

Laver 6

Nobe

Layer 9

nohe e-going end (raw)

nphe p-going end (raw)

- Max Bin e-going end

.... May Rin n-noing end

many nphe e-going end (raw)

nohe e-going end (raw

nphe p-going end (raw

Max Bin e-going end

Max Bin p-going end

mphe e-going end (raw)

nphe p-going end (raw)

--- Max Bin p-going end

Max Bin e-going end

 \dot{v}

Nobe

Layer 12

nohe p-going end (raw

Max Bin e-going end

Max Bin p-going end

Number of Photoelectrons for NKD - Poisson

Number of Photoelectrons for NKD - Raw

Double Clad Kuraray fiber

Number of Photoelectrons for NKS - Poisson

Number of Photoelectrons for NKS - Raw

Single Clad Kuraray fiber

Backup

Photoelectron statistics 2023 Hall D, Baby BCal, 3.9 GeV e⁺

From our 2023 Hall D tests using GlueX SiPMs and double-clad Kuraray fibers: **1000 phe/GeV** per side for showers at the center of the Baby BCAL prototype

- Corrected for attenuation: **1100 phe/GeV*** per side

We can scale these results for the **ePIC Barrel ECal*:**

- x 1.5 factor improvement in **SiPM photon detection efficiency**
- x 1.16 factor to account for **better optical coupling**
- x 0.69 reduction accounting for **single-clad** Kuraray fibers

This gives ~ **1239 phe/GeV** per side (fully corrected for attenuation)

- **● 10 GeV ɣ at η ~ -1.7:** 5560 phe → **9.8 % max SiPM occupancy**
- **● 19 GeV e- at η ~ -1.7:** 9181 phe → **16.1 % max SiPM occupancy**
- **50 GeV e- at η ~ 1.4 (most extreme case):** 17456 phe → **30.1% max SiPM occupancy**

Well below the region where large nonlinearities in the SiPM response are expected in almost all cases.

Small non-linear effects possible for some ultra-high energy electrons, which is acceptable (e-π separation straightforward).

* See backup slide for the attenuation length measurement and extraction of those factors

Fig. 16. The number of photoelectrons per GeV per end of the BCAL module is shown as a function of energy. A one parameter fit is plotted (dashed line). For more details see the text.