Plots for RHIC/AGS User's Meeting INTT tracking

Hinako Tsujibata (Nara Women's University) 2024.06.04 INTT MT

Abstract

Development of a tracking algorithm using INTT

- Meeting on this Friday.
- My analysis note was uploaded here
 - <u>https://sphenix-invenio.sdcc.bnl.gov/me/requests/</u> 592c12ff-01a8-4ee5-bd5b-6d4d3796892f
- INTT tracking was reported in more detail in previous INTT meeting(May 15).
 - https://indico.bnl.gov/event/23383/

 I'm going to give a poster presentation about INTT tracking at RHIC/ AGS User's Meeting and request approval of my plots at General

The contents of my poster

- Tracking method with(without) magnetic field data
- Quality of the algorithm with the simulation
 - Tracking efficiency
 - pT resolution
- Results with data taken in 2024
 - event display with magnetic field data

• pT

I will show plots to be approved in this slides.

Angular differences btw the inner and the outer layer clusters

collision point) in the x-y plane.

 These distribution has good correlations. Using the optimized collision vertex, the shape becomes straight.

Used data: 40741 without B-field

 Left(Right) plot shows angular differences btw the inner and the outer layer clusters from the origin of the coordinate (optimized

beam center) in the x-y plane.

A good correlation can be seen.

Used data: 41981 with B-field

 Left(Right) plot shows angular differences btw the inner and the outer layer clusters from the origin of the coordinate (optimized

Using the optimized collision vertex, the shape becomes straight.

Plot5: Tracking efficiency

Used data : MC without B-field proton-proton collisions at s = 200 GeV were simulated.

- The tracking efficiency as a function of pT is evaluated.
- The tracking efficiency is : N_{tracks}

N_{cluster pairs}

• The entire average appears to be $99.6 \pm 0.3\%$.

Plot6 : pT resolution

Used data : MC with B-field

• Single particles (μ^-) were injected from the origin of coordinate to INTT.

- pT resolution as a function of truth pT is evaluated.
- pT resolution is evaluated as below :
 - pT difference between the reconstructed and truth track is calculated and it is divided by truth pT.
 - This difference is fitted with Gaussian distribution to obtain its sigma as a resolution.

5

Plot7: Event display

Used data: 41981 with B-field

- This is event display of tracking in the x-y and the r(= $\sqrt{x^2 + y^2}$)-z planes.
- This plot used data with magnetic field taken in 2024.
 - Colored lines : reconstructed tracks
 - Colored points : associated cluster pairs
 - Black points : clusters

C

Plot8 : pT

Used data: 41981 with B-field

Red : positively charged particles Blue : negatively charged particles

 We could confirm that the number difference of positively and negatively charged particles are at the level of 1.9%.

Development of a tracking algorithm using INTT

- Meeting on this Friday.
- My analysis note was uploaded here
 - <u>https://sphenix-invenio.sdcc.bnl.gov/me/requests/</u> 592c12ff-01a8-4ee5-bd5b-6d4d3796892f

 I'm going to give a poster presentation about INTT tracking at RHIC/ AGS User's Meeting and request approval of my plots at General

How to evaluate the tracking algorithm

Tracking efficiency is calculated as below. Ntracks effi. = --N_{cluster_pairs}

<How to count N_{tracks} and N_{clusters} >

- 1. Make $\Delta \phi$ b/w the truth track and the closest track(cluster) distribution.
- 2. Fit the distribution by Gaussian distribution.
- 3. Define a window as within 3σ of the distribution.
- 4. Count the tracks in the window.

Table of content & used data

<u>Development of a tracking algorithm using INTT</u>

- Tracking method with B-off and B-on data.
- Event display of tracking.
- Reconstructed pT and pz of MC and data.

Used data

[MC] (p+p/200GeV)

- PYTHIA8 + GEANT4
- B-on / B-off
- vertex : Gaussian distribution
 - mean : (x, y, z) = (0, 0, 0)
 - width : (x, y, z) = $(10^{-4}, 10^{-4}, 10^{-4})$

How to reconstruct a track (B-off) (1/4)

1. Reconstruct a "tracklet".

2. Optimize the tracks.

How to reconstruct a track (B-off) (2/4)

- 1. Reconstruct a "tracklet".
 - Make a pair of inner cluster A and outer cluster B.
- Requirement : the angular difference from vertex between clusters is $|\Delta \phi_{AB}| < 0.1$.

Used vertex value (run 40741/B-off)

• The vertex used in this analysis is (x, y) = (-0.019, 0.198). The plot below shows angular difference btw inner cluster and outer cluster in x-y plane.

The vertex(-0.019, 0.198) should be used with B-off data.

- The range of d_phi cut($|\Delta \phi_{AB}| < 0.1)$ works for B-off data as well.

How to reconstruct a track (B-off) (3/4)

2. Optimize the tracks.

• Fit the tracklet and reconstructed vertex with a linear function using the least-square method.

Exclude the background

When multiple tracklets share one cluster

closest to the vertex in x-y plane.

Reconstructed tracks (run40741/B-off)

- off).
- This result is reported in the Shift Change Meeting(April 29)

The tracks were reconstructed successfully using data(run40741/B-

How to reconstruct a track (B-on)

- 1. Reconstruct a "tracklet" in the same method as B-off data.
 - The vertex is the same as B-off is used.
- 2. Optimize the tracks.
 - Connect the tracklet and reconstructed vertex with a circle.

Used vertex value (run 41981/B-on)

• The vertex used in this analysis is (x, y) = (-0.019, 0.198). The plot below shows angular difference btw inner cluster and outer cluster in x-y plane.

• The vertex(-0.019, 0.198) should be used with B-on data as well. The range of d_phi cut works for B-off data.

Reconstructed tracks(run41981/B-on)

- on).
- This result is reported in the Shift Change Meeting (May 13) \bigcirc .

The tracks were reconstructed successfully using data(run40741/B-

How to calculate p1

- 1. <u>Reconstruct a track curvature</u> with B-on data.
- 2. Calculate the Radius of curvature <u>(R).</u>
- 3. Calculate p_T from the equation for circular motion.

$$m\frac{v_T^2}{R} = ev_T B$$
$$p_T = 0.3BR \quad [GeV/c]$$
• B = 1.4T is used in this analysis.

Reconstructed pT, pz (MC/B-on)

- Left(Right) plot : pT(pz) difference btw reconstructed pT(pz) and simulated pT(pz) as a function of simulated pT(pz).

pT resolution is 20% and pz resolution is 2% in 5GeV.

Red line represents the mean value and StdDev of pT(pz) difference.

Reconstructed pT with run 41981(B-on)

pT and pz are reconstructed with B-on data (run41981). The left plot shows pT and the right plot shows pz.

- pT and pz are reconstructed successfully with data.
- few%.

• The # of positive particles is as same as the # of negative particles as the level of

104	
699	
725	
	2

Summary & Next step

Summary : Development of a tracking algorithm using INTT

- Tracks are reconstructed with B-off and B-on data successfully. Obtained pT and pz with MC and data.
 - (MC)pT resolution is 20% and pz resolution is 2% in 5GeV.
 - The result with data should be compared with MC.
 - The # of positive particles is as same as the # of negative particles as the level of few%.

Next step

Associate INTT tracks with EMCal tracks

How to reconstruct a track (3/4)

2. Reconstruct a vertex using multiple track seeds.

- Calculate the closest point to the origin (DCA point) on the track seed.
- Define the vertex position as the mean of DCA position.

