Pion and Kaon Form Factors at the EIC

Love Preet¹, G. M. Huber¹, S. J. D. Kay^{1,2}

¹University of Regina, ²University of York

Exclusive, Diffractive, & Tagging Meeting 10/06/2024

ePIC simulations for exclusive reactions

- Feasibility studies of exclusive pion and kaon electroproduction reactions through ePIC simulations.
- Utilized DEMPgen to generate files for both reactions, passed π^+ files through the latest ePIC simulations.
- Begin with π^+ electroproduction reaction.

$$e + p \rightarrow e^{'} + \pi^+ + n$$

- Indirectly use the "pion cloud" of the proton via the $p(e,e' \pi^+ n)$ process.
- Identification involves reconstructing all final state particles.

Spatial topology of weighted truth variables at ePIC detector

- Simulated 2200k events for 5(e) on 41(p) GeV collisions.
- e', π^+ hits the central detector, n hits far-forward detectors (mainly ZDC).

Spatial topology of weighted rec variables at ePIC detector

- Simulated 2200k events for 5(e) on 41(p) GeV collisions.
- e', π^+ hits the central detector, n hits far-forward detectors (mainly ZDC).

Reconstruction efficiency for e', π^+ drops significantly compared to january simulated files.

[1 cluster events with E>10 GeV, $\theta^*{<}6.0$ mRad]

n rec θ^* vs P around p axis for 1 cluster events

 π^+ rec θ vs P

Neutrons truth vs rec distribution

n truth θ^* vs ϕ^* around p axis

• Reconstructed neutrons using newly merged branch <u>ReconstructedFarForwardZDCNeutrons</u>.

200 φ* (deg) 0 Rate/bin (Hz) nTruthw rot Thethaph 200000 150 8.943 1.334 5.651 100 103.4 10-6 -100 10-7 -150 -200 10 15 20 25 30 35 θ* (mRad)

~42% Events lost within $\theta^* < 6.0$ mRad.

 θ^{*} , ϕ^{*} is the rotation by 25 mRad around proton axis

Spatial topology of weighted rec neutrons at ePIC detector

• Reconstructed neutrons using newly merged branch ReconstructedFarForwardZDCNeutrons.

For 5(e) on 100(p) GeV collisions from ECCE simulations.

For 5(e) on 41(p) GeV collisions from ePIC simulations.

Accessing form factor through π^+ electroproduction

- Measure $e'\pi^+n$ triple coincidence events.
- At small -t, the pion pole process dominates $\sigma_{\rm L}$.
- In the Born model, F_π^2 appear as [In practice one uses a more sophisticated model]

$$rac{d\sigma_L}{dt} \propto rac{-tQ^2}{(t-m_{\pi}^2)^2} g^2_{\pi pn}(t) F^2_{\pi}(Q^2,t)$$

- Q^2 , -t reconstruction resolution is crucial for extracting F_{π}^2 from the measured cross section.
- Different approaches tried to reconstruct -t.

ated model]

$$Q^{2} = (e - e')^{2} \qquad F_{\pi}^{2}(Q^{2}, t)$$

$$g_{\pi pn}^{2}(t)$$

$$p$$

$$n$$

 $e + p \rightarrow e' + \pi^+ + n$

-t reconstruction using lepton-meson vertex (Method - 1)

-t reconstruction using proton-baryon vertex (Method - 2)

-t reconstruction using pT of e' and π^+ (Method - 3)

-t reconstruction using corrected n track (Method - 4)

Reconstructed n corr:

Using missing momentum information,

 $p_{miss} = |\vec{p_e} + \vec{p_p} - \vec{p_{e'}} - \vec{p_{\pi^+}}|$

And replaced θ_{Miss} , ϕ_{Miss} with $\theta_{\rm ZDC}, \phi_{\rm ZDC}, \text{ and fixed the}$ neutron mass.

https://www.sciencedirect.com/science/article/abs/pii/S0168900223002280

-t rec corr vs -t truth Distribution

12

20 40 htw rec4

-t_{rec_corr} (GeV²)

htw res4

11256 -19.53

14.05

Entries

Std Dev

60 - t_{truth}/'.

Mean v

11256 0.04828

0.05822 Std Dev x 0.05204 Std Dev y 0.05797

10-7

Comparison of Δ -t from various methods

• All methods reconstruct -t slightly shifted from true -t, which would need to be understood and corrected for in the actual physics analysis.

For 5(e) on 100(p) GeV collisions from ECCE simulations.

For 5(e) on 41(p) GeV collisions from ePIC simulations.

htw res n4

2 ۲۳ - P_{MC})/P_{MC} (%)

11256

-0.07157

0.7517

Entries

Mean

Std Dev

Detection efficiency per (Q^2,t) bin

• Distribution has expected shape, but is lower than expected, due to a low no. of reconstructed neutrons and lower than anticipated e', π^+ reconstruction.

- Number of reconstructed e', π^+ drops significantly, which in turns affects the coincidence events.
- Used newly merged ReconstructedFarForwardZDCNeutrons branch to reconstruct neutrons.
- Except ~50 % drop of e', π^+ , everything looks optimistic.
- Plan to determine the $F_{\pi}(Q^2)$ projections for the TDR.
- Reconstruction is considerably challenging for the kaon electro-production reaction.
- Main issue is to separate photons from the low-energy neutrons in the both ZDC EMCAL & HCAL.
- Will update the status in the upcoming meetings.

Thank you !

EIC-Canada

This research was supported by the Natural Sciences and Engineering Research Council of Canada (NSERC), FRN: SAPPJ-2021-00026

Email : navisaharan3@gmail.com

- Absolute value of the PDG resulted an expected no. of e' and π^+ .
- No increase in the number of coincidence events,
- Events correspond to e^+ and π^- with different P vs. θ distribution.

January simulations results

• For 5(e) on 100(p) GeV collisions from ePIC simulations.

