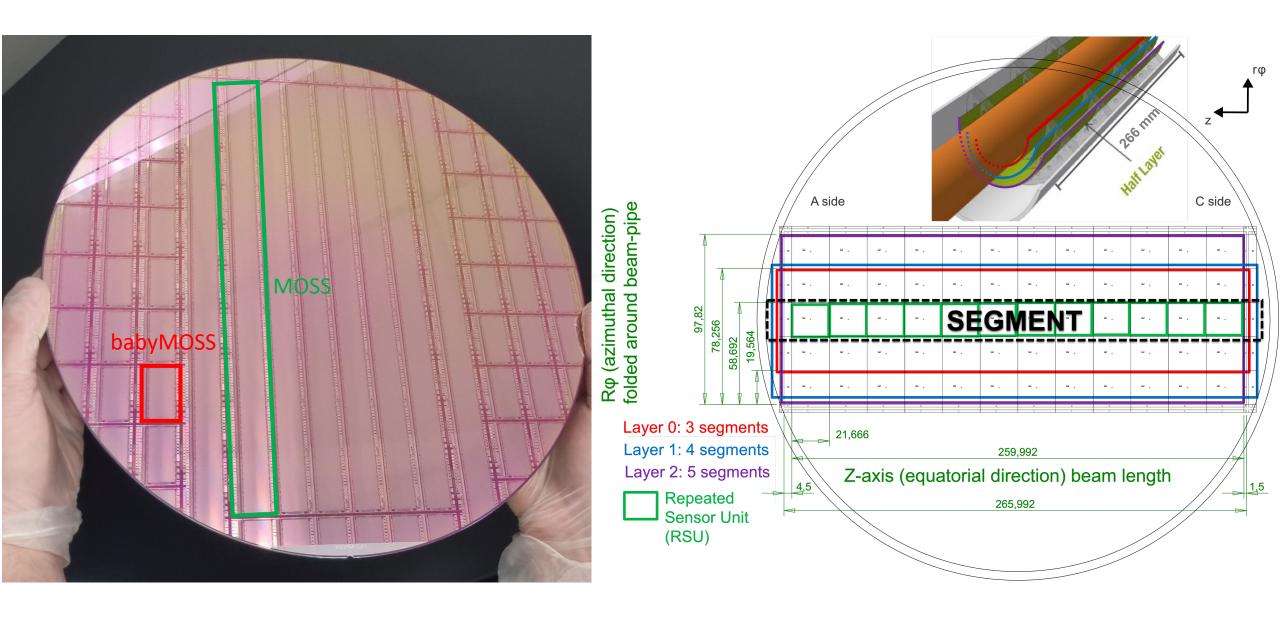


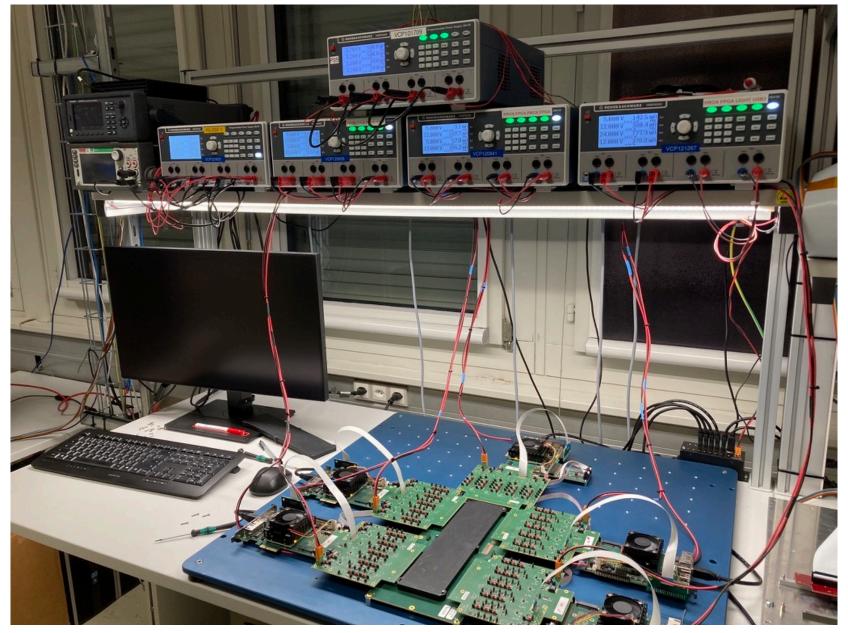
ER1 BabyMOSS Tests by LBL/UCB

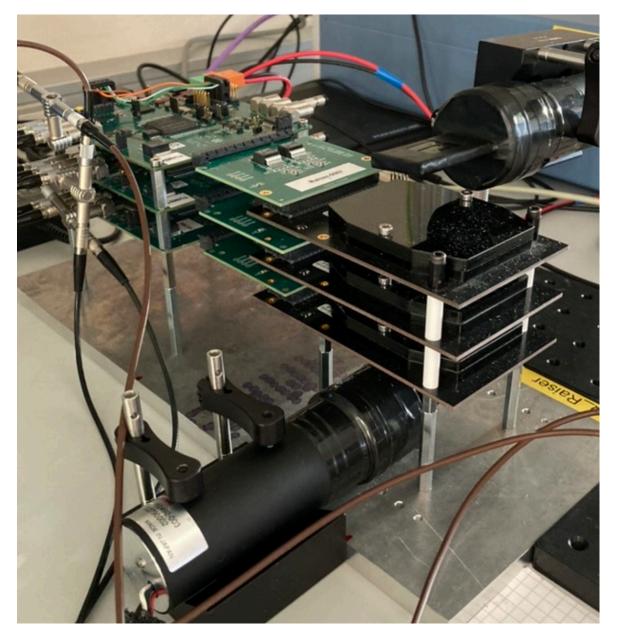
- Beam Tests at FTBF and BASE -


Zhenyu Ye LBL

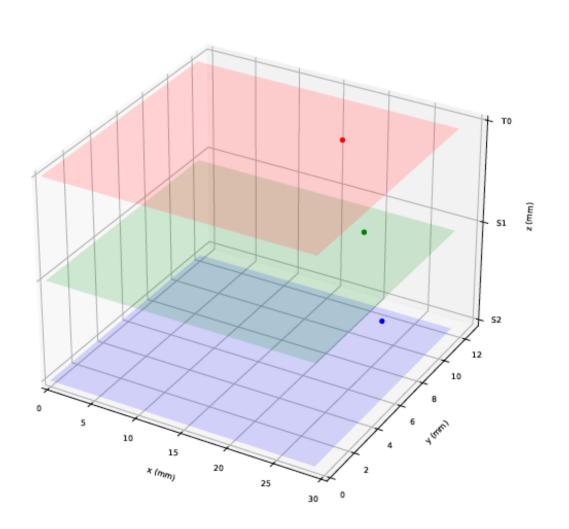
7/25/24

ALICE ITS3 ER1 – MOSS and BabyMOSS Sensors

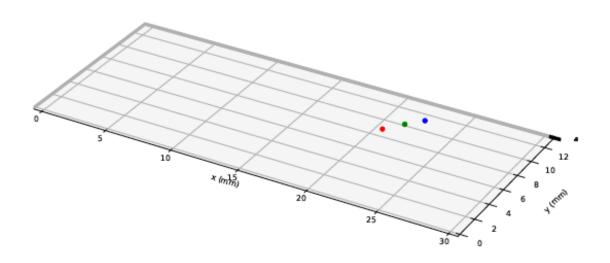



ALICE ITS3 ER1 - MOSS

Baby Moss Telescope


Iaroslav Panasenko (Lund), Zhenyu Ye (Berkeley)

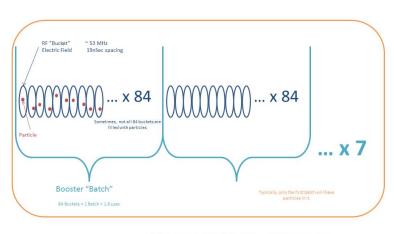
- Changes to the baby-moss FW (and SW) to fix DAQ hanging problem with high trigger rate
 - The trigger module output is enabled only when busy is low
 - Also added a control register to the trigger module to enable/disable output
 - When event FIFO is full, raise the busy signal until FIFO is empty
- The system was tested ok with triggers from a pulse generator at 2 kHz (in prep. for beam)
- Assembled a baby-moss telescope for cosmic
 - 1 trigger board, 3 sets of baby-moss sensor + DAQ + raiser boards separated by ~2.3 cm each, 2 scintillators on top and below for triggering
 - The trigger and busy lines of the DAQ and trigger boards are daisy-chained together
 - Recorded \sim 4k events at \sim 1.1 Hz over the weekend, \sim 10% having hits in all 3 sensors



Recorded Cosmic Events

More can be found under cosmic event.pdf

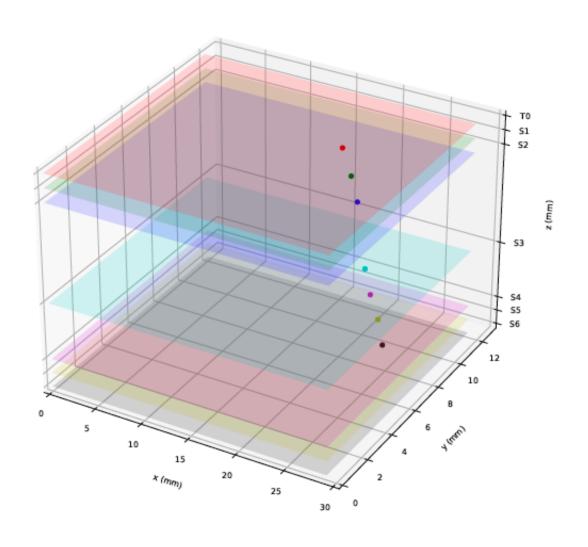
Very first event with hits in all 3 planes recorded on Feb 16, 2024

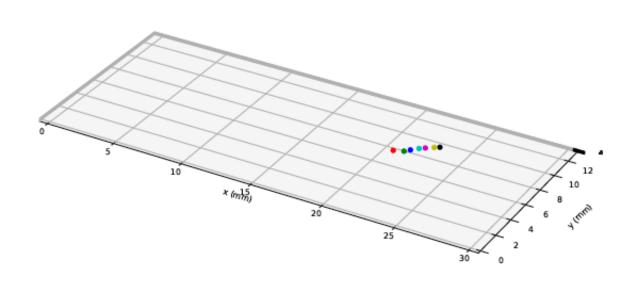


BabyMOSS Telescopes

Beam Telescope at FTBF

7 Batches = 1 MI Cycle = 11.2 microSec

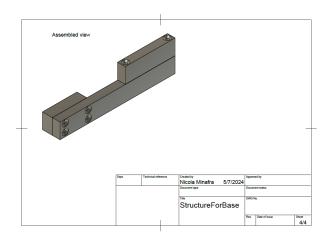

- 19 nanoseconds = 1 RF bucket (53 MHz)
- 1.6 microseconds = size of booster (84 RF buckets), called a "batch"
- 11.2 microseconds = size of Main Injector cycle (7 Batches)
- 4.2 seconds = 1 spill (375k MI cycles)
- 60 seconds = approximate rep rate of spill

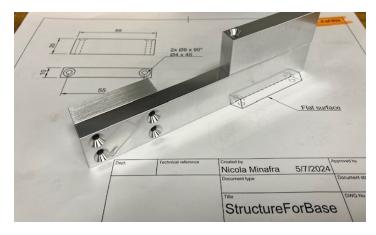

only one particle per Main Injector RF bucket would be extracted per rotation, but for intensities up to 100 kHz, double occupancy occurs 35% of the time and two particles are extracted instead. This percentage can increase at higher intensities.

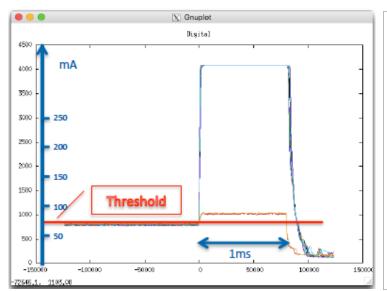
Recorded FTBF Events

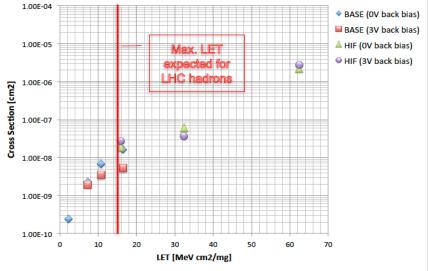
BabyMOSS at Fermilab Test Beam Facility

- LBL/UCB: Tucker Hwang, Zhenyu Ye; UIC: Danush Shekar
- Schedule
 - ✓ 4/15-4/16: initial check at CERN (Iaroslav, ZY)
 - ✓ Verified the status of babyMOSS's
 - ✓ 4/29-5/1: check at LBL
 - ✓ Verified the status of babyMOSS, DAQ and raiser boards, trigger board, PMTs and scintillators, PS, DAQ PC
 - \checkmark 5/2-5/7: assemble the telescope
 - ✓ Received the telescope box from UIC machine shop
 - ✓ Assembled babyMOSS and trigger detectors
 - ✓ Verified all the parts are in-hand and working
 - ✓ 5/8-5/21: install and commission telescope at FTBF
 - **✓** Using standalone codes
 - ✓ 5/22-5/28: take and analyze data as primary user
 - ✓ Efficiency, fake rate, spatial resolution
 - ✓ Cluster size as a function of incident angle
 - 6/26-7/2: take data as primary user
 - Add LGAD+ETROC2 planes as timing reference for future beam tests




BabyMOSS SEL Test at BASE - Objectives


• Identify SEL-sensitive areas on the babyMOSS using motion-controlled collimators

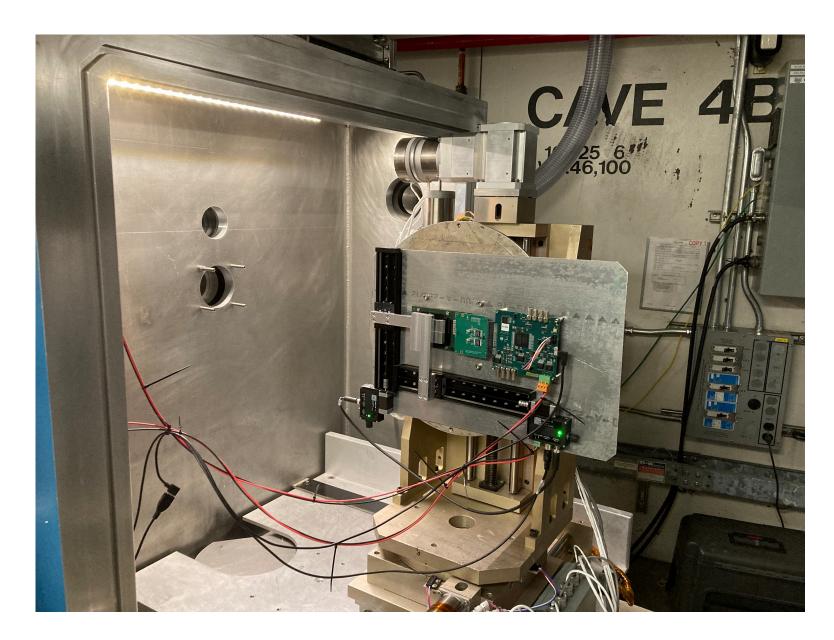


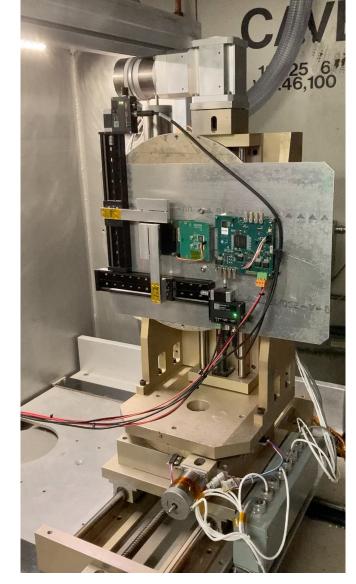
• Measure SEL cross-section as a function of linear energy transfer (below are measurements done on ALPIDE)

Ref: Hartmut Hillemanns @ CERN LHC Radiation Effects Symposium 2018

Berkeley Accelerator Radiation Facility

- Berkeley Accelerator Space Effects Facility, LBNL https://cyclotron.lbl.gov/base-rad-effects
 - Heavy ions with fluxes up to 10⁷ cm⁻²s⁻¹ and LET between 1-100 MeV/(mg/cm²)


Ion	Cocktail (AMeV)	Energy (MeV)	Z	A	LET (Entrance) (MeV/mg/cm2)	Range in Si (Max) (μm)
В	10	108.01	5	11	0.89	307.2
О	10	183.47	8	18	2.19	222.2
Ne	10	216.28	10	22	3.49	166.1
Si	10	291.77	14	29	6.09	132.1
Ar	10	400.00	18	40	9.74	116.6
V	10	508.27	23	51	14.59	93.9
Cu	10	659.19	29	65	21.17	84.6
Kr	10	885.59	36	86	30.86	84.1
Y	10	928.49	39	89	34.73	68.9
Ag	10	1111.92	47	107	46.92	60.5
Xe	10	1232.55	54	124	58.78	49.0
Au*	10	1955.87	79	197	86.38	54.8


• Proton and neutron beams are also available for SEE, TID, and NIEL studies

BabyMOSS SEL Tests at BASE – Setup

BabyMOSS SEL Tests at BASE - Schedule

- LBL/UCB: Anjali Nambrath, Barak Schmookler, Barbara Jacak, Emma Yeats, Zhenyu Ye
- CERN: Hartmut Hillemanns; KU: Nicola Minafra
- Schedule:
 - May 22
 - 07:00-16:00 installation and commissioning
 - May 23-24
 - 08:00-11:30 beam tuning
 - 11:35-11:50 4x10³ cm⁻²s⁻¹ Xe beam with maximum intensity limited by contaminations
 - 12:10-16:40 Y beam with intensity up to $2x10^5$ cm⁻²s⁻¹
 - 17:30-08:30 Xe beam with intensity up to $4x10^5$ cm⁻²s⁻¹
 - 17:30-03:00 scan in X-Y with 1.5-mm collimator gap in X and 1.2-mm collimator gap in Y
 - 03:00-04:30 reduce the collimator gap sizes
 - 04:30-08:30 scan in X-Y with 0.2-mm collimator gap in X and 0.2-mm collimator gap in Y

July 1

- 12:00-16:00 installation and beam tuning
- 16:00-20:00 measure SEL cross-section as a function of LETs with different ion beams
- 20:00-24:00 scan in X-Y with 0.2-mm collimator gap in X and 0.2-mm collimator gap in Y with Xe beam

Summary and Outlook

Beam Tests at Fermilab Test Beam Facility

- Commissioned a 7-plane babyMOSS telescope and took data with 120 GeV protons at FTBF
 - Spatial resolution consistent with expectation
 - Studied cluster size dependence on incident angle
- Next steps:
 - Finish data analysis and report the findings
 - Prepare for 2nd beam test on June 26-July 2 with the addition of DC-LGAD+ETROC2 planes
 - (AC-LGAD) Test beam in the Fall options at DESY, FTBF, Jlab being considered

• SEL Tests at Berkeley Accelerator Space Effects Facility

- Searched for SEL-sensitive areas on babyMOSS with motion-controlled collimators
- Next steps:
 - Finish data analysis and report the findings
 - Complete the X-Y position and LET scans on July 1 (~8 hours)