

dRICH beam test CERN-PS May 2024

Roberto Preghenella

preghenella@bo.infn.it

ePIC TIC meeting, 24 June 2024

2023 test beam at CERN-PS

successful beam test with prototype SiPM photodetector units (CERN-PS, ended on 18th October)

2

2024 hardware goals (important)

replace the partial PDUs at the corners

- have 8x full 256-channels PDUs
- 2048 readout channels
- full ring imaging

V test different Hamamatsu sensors

- we have matrices to build
 - 4x S13360-3050 PDU heads
 - 4x S13360-3075 PDU heads
 - 4x S14160-3050 PDU heads
- although not obviously simple to change configuration during beam test
- we eventually decided to equip the readout with
 - 4x S13360-3075 PDUs
 - 4x S13360-3050 PDUs

replace faulty electronics

use the new ALCOR v2.1 chips

🔽 include a tracker

- GEMs or another tracking system
- add information on track direction

2024 hardware goals (less important)

X sub-zero cooling with liquid fluid

- \circ this will be very unlikely
- presently still issues with tiny fluid leaks
 - even if we understand how to deal with soon, we will likely need a long rework of the PDU cooling system
 - unlikely to fit in the preparation schedule
- baseline is to keep Peltier cooling
 - need to improve humidity, on the right track

use compact power-supply system

- LV distribution based on CEAN SY mainframe
 - might help reduce rack allocated space
 - will look closer to a real experiment detector

improve timing system

- currently based on two scintillators
 - time resolution is not fantastic: 150-200 ps
- would be nice to go below 50 ps
 - system must be in sync with ALCOR readout
 - not impossible, but need extra work and thinking

2024 Physics goals (from the top of my head)

number of photoelectrons

- aerogel and gas
 - in 2023 we did not collect much gas data
- compared to reference MAMPT readout
- with different Hamamatsu SiPM sensors
- with different aerogel
 - refractive index
 - thickness
- with wavelength filters
 - number of SiPM detected photons vs. λ
 - effective SiPM chromaticity

• single-photon angular resolution

- tune the position of mirrors for optimal focus
 - in 2023 we did it almost "by eye"
 - we need to have online performance analysis
- make use of tracking system

• particle identification

- as a function of beam momentum
- with tracking and more photons might yield something unexpectedly nice

2024 test beam at CERN-PS

another successful beam test with prototype SiPM photodetector units (ended on 5th June)

PDU

4x SiPM matrix arrays (256 channels)

SiPM readout box was dismounted upgraded with full acceptance (2 k channels) equipped with more temperature sensors

2024 test beam at CERN-PS

another successful beam test with prototype SiPM photodetector units (ended on 5th June)

INFŃ

From an empty box to a full detector

empty readout box with PDU housing and monitor thermocouples

ePIC-dRICH SiPM readout box

Beam test preparation at CERN PS

Aerogel operations

Power supply

Temperature monitoring

front of the box in stable runs (near SiPMs)

results

2D fit parameters match accurately fast MC input notice redefinition of Nsig and Nbkg

	=	23.6048	+/-	0.0154101
	=	2.87125	+/-	0.00255149
	=	1.18834	+/-	0.00193679
	=	73.0013	+/-	0.00166626
R	=	1.88591	+/-	0.00123206
	=	10.3538	+/-	0.0133316

Nsiq Х0 2D fit parameters match ΥO accurately fast MC input R sigma notice redefinition of Nsig and Nbkg Nbkq

	=	23.6048	+/-	0.0154101
	=	2.87125	+/-	0.00255149
	=	1.18834	+/-	0.00193679
	=	73.0013	+/-	0.00166626
R	=	1.88591	+/-	0.00123206
	=	10.3538	+/-	0.0133316

is large as expected

11.5 GeV/c negative beam, n = 1.02 aerogel (accumulated events)

global ring parameters and performance, running also online

2D fit to accumulated data with realistic model (ring + background)

large as expected

11.5 GeV/c negative beam, n = 1.02 aerogel (accumulated events)

2D fit to accumulated data with realistic model (ring + background)

Background studies

data taken without aerogel radiator

removed the aerogel tile, background remains

with timing cuts applied, large background as seen in past years

Background studies

basically all the background remains after removing aerogel, not from DCR

in-time (40 ns window) background is ~ 10x larger than out-of-time (40 ns window) background (mostly DCR) | origin still unclear | to be understood

Background studies

there is often one background hit in the ring, this will impact resolution

2D fit to accumulated data with realistic model (ring + background)

Comparison between different SiPM sensors

same Hamamatsu technology, different SPAD sizes

4 PDUs were equipped with one type of sensors

symmetrically, the other four with different sensors

Comparison between different SiPM sensors

same Hamamatsu technology, different SPAD sizes

larger SPADs see more light (at the same overvoltage) than smaller SPADs | observed 15% more light | expected 25% higher PDE from datasheet 24

Increasing number of aerogel tiles

n = 1.02 aerogel tiles of L = 2 cm thickness

from 1 aerogel tile

up to four tiles

Increasing number of aerogel tiles

n = 1.02 aerogel tiles of L = 2 cm thickness

adding tiles increases light, less and less effectively (absorption)

Wavelength filters

several filters used to select specific wavelength bands

we still see the ring, but the "beam background" makes life difficult

Wavelength filters

several filters used to select specific wavelength bands

single-photon resolution improves, not clear why

ring radius decreases with increasing wavelength

n = 1.026 aerogel samples

larger refractive index, expected larger rings and more light

excluded bottom-left corner in these runs because of little issue

n = 1.026 aerogel samples

larger refractive index, expected larger rings and more light

increases with refractive index (angle)

radius increases

n = 1.026 aerogel samples

larger refractive index, expected larger rings and more light

same view with extended range

single-photon resolution improves

Beam momentum scan

positive particles, aerogel only

Beam momentum scan

positive particles, aerogel only

asdasdasd

Beam momentum scan

positive particles, aerogel only

asdasdasd

Interplay between radiators

gas ring tags pions, kaons and protons are below threshold

gas ring

Interplay between radiators

gas ring tags pions, kaons and protons are below threshold

clean kaon identification at 10 GeV/c

TCh-1 set below kaon threshold, TCh-2 set below proton threshold

TCh-1 set below kaon threshold, TCh-2 set below proton threshold

pion tag: TCh-1 required

TCh-1 set below kaon threshold, TCh-2 set below proton threshold

reconstructed radii at 8 GeV/c with kaon tag

kaon tag: TCh-1 veto and TCh-2 required

TCh-1 set below kaon threshold, TCh-2 set below proton threshold

proton tag: TCh-1 veto and TCh-2 veto

Gas radiators

standard gas C_2F_6 (n = 1.0008) and heavier C_4F_{10} (n = 1.0014)

C₄F₁₀ (n = 1.0014) C_2F_6 (n = 1.0008) y (mm) y (mm) 10² 80 80 10 60 60 40 40 20 20 10 0 -20 -20 -40 -40-60 -60 10^{-1} -80 -8060 80 80 -80 -60 -40 -2020 40 -80 -6040 60 0 -4020 x (mm) x (mm)

heavier gas, larger refractive index, larger ring

no aerogel in these data

Gas radiators

standard gas C_2F_6 (n = 1.0008) and heavier C_4F_{10} (n = 1.0014)

increases with refractive index (angle)

radius increases