TimePix4 for the Low-Q² Tagger Tracker

Low-Q²Tagger - Requirements

- Extend the acceptance of the experiment, $Q^2 \rightarrow 0$ GeV
 - Covering quasi-real photoproduction processes
- Backgrounds
 - Below Q²≈0.0005 GeV, scattering angle smaller than beam divergence.
 - Bremsstrahlung cross section dominates.
 - Electron kinematics alone cannot be used to identify DIS electron.
 - Need to handle statistically with exclusivity variables and background only samples.
 - Synchrotron background hits in single layer no track
 - Electron beam gas originates at non-IP vertices track usually will be distinguishable.
- Rates At highest luminosity e-p conditions
 - O(20) IP Bremsstrahlung per 10 ns bunch crossing, ~12 in tagger acceptance.
 - Electrons beam gas interactions (Bremsstrahlung also) acceptance with around the same frequency as photoproduction.
 - Synchrotron radiation backgrounds concerning but possible mitigation approaches under investigation by Andrii.

Low-Q² Tagger – Bremsstrahlung Rates

- Bremsstrahlung rates highest concern while Synchrotron being investigated.
 - Highest rates greater than 10 kHz per pixel in current geometry
 - Will be significantly larger in high luminosity ion collisions.
 - Detector planes to be able to move around to match with beam conditions

Total maximum Brem data rates

(Need updating – Divide by about 17)

Maximum rates		
Pixel (P1)	70 kHz	
2 column (C1)	8 MHz	
Tpix4 (T1)	600 MHz	38 Gb/s
Board (B1)	1500 MHz	96 Gb/s
Layer (L1)	2500 MHz	160 Gb/s

Total integrated rates			
Tagger 1	2 GHz	130 Gb/s	
Tagger 2	7 GHz	480 Gb/s	
Total	9 GHz	600 Gb/s	

Data buffered & filtered:	need a hadron in main detector	
Trigger rate: 500 kHz:	99.4% rejection (brem only)	
Data rate (signal):	4 Gb/s	
Data rate (incl BG and rand sample) <20 Gb/s To tape		

Hit rates in the first layer of both Low-Q2 tagger modules - needs updating

Timepix4 - Technology

- Timepix4 is the most recent ASIC from the CERN based Medipix collaboration.
- Hybrid pixel detector
 - Sensor separate from the electronics
 - Can select sensor based on requirements
- 448x512 array of 55µm square pixels
 - 6.94 cm² sensitive area
 - Data driven readout Only reads out pixels which register a hit
 - 4 side buttable using TSV technologies Read out through bottom of chip rather than wire bonds allowing tiled layer of detectors.
- 200 ps Time of arrival clock binning
- 25 ns Time over threshold clock binning (energy measurement)
- Up to 16, 10.23 Gbps readout lines
 - 64-bit event packet.
 - 10.8 kHz maximum (average) rate per pixel.
 - Absolute maximum single pixel rate limited by Readout path for periphery on one side. From: Timepix4, a large area pixel detector readout 4 25 ns clock 4

Timepix4 wire bonded to Nikhef carrier board

Hybrid pixel detector schematic. From: <u>The Timepix4</u> analog front-end design: Lessons learnt on fundamental limits to noise and time resolution in highly segmented hybrid pixel detectors - ScienceDirect

Timepix4 - Technology

- Only mature technology capable of meeting requirements
- Large community testing ASIC and developing tools
 - Multiple iterations of ASIC already fixed issues.
- Timepix4/SPIDR4 telescope deployed at SPS-CERN
- Early studies with setup in Glasgow
 - Tests planned in Europe this summer using SPIDR4
 - Tests planned at Jlab with prototype EIC DAQ early 2025
 - Decision between SPIDR4/simpler EIC readout boards
- TSV processed chips being tested

SPS Timepix4 telescope photo and CAD. From: TDCPix test (26 April 2023) · Indico (cern.ch)

Test setup in Glasgow

Technical Challenges

- The highest rates are at the limit of the ASICs design capabilities
 - Need an accurate model of the background environment.
 - Need realistic digitization, modelling detector response e.g. charge sharing and time over threshold.
- Huge amount of data being read out
 - Reduce this as early as possible to relieve stress on the DAQ.
 - FPGA/hardware cluster and track based background removal
 - Graph Neural Networks for constant latency.
 - Bunch crossing matching to an "event" in the central detector
- Timepix4 while mature is highly configurable so need to understand how to get the most out of it for our application.

Digitization with fast simulation

- <u>Allpix2 framework</u> model used to generate realistic events
 - 10M events ~ 8 hours = 350 Hz
 - Not using the most realistic available detector modules
 - Outputs 6x6 grid of ToA and ToT values.
 - Has significant user base, frequent meetings and many demonstrations using timepix/maps/other silicon detectors
- <u>Conditional Variational Autoencoder</u> trained to reproduce distribution of events
 - 10M events ~ 70 seconds = 150 kHz
 - Model not yet optimized
 - Saved as onnx so would be simple to add to eicrecon.
- Realistic events will be essential to better understand rates and reconstruction limits

x=0.0, y=0.0, px=-0.05, py=-0.05

Example simulated events

Example generated events

Digitization with fast simulation

Pixels hit per event - generated

x=0.5, y=0.5, px=0.0, py=0.0

Example simulated events

Example generated events

Non-Timepix related challenges

- Integration with the accelerator/beampipe remains challenging
 - Studies into balancing impedance/synchrotron backgrounds and detector acceptance/resolutions underway.
 - Latest updates Low-Q2 Tagger weekly meeting (18 June 2024) · Indico (bnl.gov)

End