PARTICLE IDENTIFICATIONS IN SIDIS RECONSTRUCTIONS

SIDIS PWG meeting for ePIC June 11° 2024 Lorenzo Polizzi | University of Bologna

DATA ANALYZED

This analysis presents the production of positive and negative pions, kaons and protons as a function of different kinematic variables over their kinematic range with PDG code PID performance.

The data are taken from (event analyzed from 1885 to 1888):

dtn-eic.jlab.org//work/eic2/EPIC/RECO/24.05.0/epic_craterlake/ SIDIS/pythia6eic/1.0.0/18x275/q2_0to1

pythia_ep_noradcor_18x275_q2_0.00000001_1.0_run9.ab.1885-1888.eicrecon.tree.edm4eic.root

VARIABLE RECONSTRUCTION

The variables of interest are Q^2 , x_B , z, P_{hT} , η , φ (polar angle) and the momentum.

The DIS variables are reconstructed with the Double Angle method:

$$y = \frac{\tan\frac{\varphi}{2}}{\tan\frac{\varphi}{2} + \tan\frac{\theta}{2}} \qquad Q^2 = 4E_0^2 \cot\frac{\theta}{2}(1-y) \qquad x_B = \frac{Q^2}{4E_0E_py}$$

Where y is the inelasticity, θ represents the polar angle of the scattered electron and E_0 and E_p are the correspective energy of the electron and proton beam.

VARIABLE RECONSTRUCTION

The SIDIS variables follow the theory and are defined as:

$$z = \frac{P \cdot P_h}{P \cdot q} \qquad \qquad \vec{P}_{hT} = \vec{P}_h - \frac{\vec{P}_h \cdot \vec{q}}{|\vec{q}|} \vec{q}$$

P denotes the momentum of the target hadron, P_h represents the momentum of the identified hadron, and q is the momentum of the virtual photon.

The regions with positive rapidity are the one along the proton beam direction, consequently, the electron beam derection refers to negative rapidity values.

PLOTS

Three type of plots are displayed in the next slides:

- 1. Particle production normalized over the summed area of the three histograms to show their densities in different kinematic regions.
- 2. Relative fraction of particle types normalized over the sum of each bin content.
- 3. Reconstruction efficiency of the three hadron types, calculated as the fraction of reconstructed data over the MC generated data.

NORM. COUNTS vs Q^2 positive case

NORM. COUNTS vs Q^2 | NEGATIVE CASE

Efficiency reconstruction of negative particles | 18x275 GeV

NORM. COUNTS vs x_B positive case

MC Production of positive particles | 18x275 GeV

NORM. COUNTS vs x_B | NEGATIVE CASE

Lorenzo Polizzi | Bologna

Efficiency reconstruction of negative particles | 18x275 GeV

NORM. COUNTS VS Z POSITIVE CASE

12

NORM. COUNTS vs z NEGATIVE CASE

Efficiency reconstruction of negative particles | 18x275 GeV

NORM. COUNTS vs P_{hT} positive case

MC Production of positive particles | 18x275 GeV

NORM. COUNTS VS P_{hT} NEGATIVE CASE

16

Efficiency reconstruction of negative particles | 18x275 GeV

NORM. COUNTS vs η positive case

NORM. COUNTS vs η | Negative case

Lorenzo Polizzi | Bologna

No cuts where performed in the pseudorapidity.

NORM. COUNTS vs φ positive case

21

NORM. COUNTS vs φ | Negative case

22

Efficiency reconstruction of negative particles | 18x275 GeV

NORM. COUNTS VS mom | POSITIVE CASE

24

Production of positive particles with the Momentum

NORM. COUNTS VS mom | NEGATIVE CASE

Production of negative particles with the Momentum

25

Production of negative particles with the Momentum

EFFICIENCY VS mom

Efficiency reconstruction of positive particles | 18x275 GeV

Efficiency reconstruction of negative particles | 18x275 GeV

More statistic and the integration of region cuts are needed.

The calculations were made over a small fraction of the data, as shown in the first slide, due to personal technical limitation. The opportunity to use more data would enhance the performance of the curret simulations.

Nevertheless, the current PID technique shows the low ability in reconstructing these hadrons across particular kinematic ranges. Future integrations in the simulated data are necessary to improve the reconstruction performances and gain a better understanding of the physics at the EIC.

THANKS FOR YOUR ATTENTION