







Istituto Nazionale di Fisica Nucleare





#### UNIVERSITÀ **DI PAVIA**

#### Lorenzo Rossi

HYDROGRAPHICA TABVI A 34VS TERRARVM ORBIS GEOGRAPHICA AC HYDROGRAPHICA TABVI A 34VS TERRARV

#### **SIDIS Working Group meeting**

# unpolarized TMDs



#### $\hat{f}_1^q(x_B, \mathbf{b}_T; \mu_F, \zeta_F) = [C \otimes f_1](x_B)$

 $\times \left(\frac{\zeta}{\mu_b^2}\right)^{K(b_\star,\mu_{b_\star})/2} \left[\frac{\zeta}{Q_0}\right]$ 

$$B_{B}, b_{\star}; \mu_{b_{\star}}, \mu_{b_{\star}}^{2}) \exp\left\{\int_{\mu_{b_{\star}}}^{\mu_{F}} \frac{d\mu'}{\mu'} \gamma(\mu', \zeta_{F})\right\}$$

$$\frac{\zeta}{Q_0} \Big]^{-g_K(\mathbf{b}_T)/2} f_1^{NP}(x, \mathbf{b}_T; \zeta, Q_0)$$



Matching coeff. (perturbative calculable)

 $\hat{f}_{1}^{q}(x_{B}, \mathbf{b}_{T}; \mu_{F}, \zeta_{F}) = \mathbb{C} \otimes f_{1}](x_{B}, b_{\star}; \mu_{b_{\star}}, \mu_{b_{\star}}^{2}) \exp\left\{ \int_{\mu_{L}}^{\mu_{F}} \frac{d\mu'}{\mu'} \gamma(\mu', \zeta_{F}) \right\}$ 

 $\times \left(\frac{\zeta}{\mu^2}\right)^{K(b_\star,\mu_{b_\star})/2} \left[\frac{\zeta}{O_0}\right]^{-g_K(\mathbf{b}_T)/2} f_1^{NP}(x,\mathbf{b}_T;\zeta,Q_0)$ 





Matching coeff. (perturbative calculable)

 $\hat{f}_1^q(x_B, \mathbf{b}_T; \mu_F, \zeta_F) = [C \otimes f_1](x_B)$ 

 $\times \left(\frac{\zeta}{\mu_{h}^{2}}\right)^{K(b_{\star},\mu_{b_{\star}})/2} \left[\frac{\zeta}{O_{0}}\right]$ 

Collins, "Foundations of Perturbative QCD"

Collinear PDFs (previous fit)

$${}_{B}, b_{\star}; \mu_{b_{\star}}, \mu_{b_{\star}}^{2}) \exp\left\{\int_{\mu_{b_{\star}}}^{\mu_{F}} \frac{d\mu'}{\mu'} \gamma(\mu', \zeta_{F})\right\}$$

$$\frac{\zeta}{Q_0} \Big]^{-g_K(\mathbf{b}_T)/2} f_1^{NP}(x, \mathbf{b}_T; \zeta, Q_0)$$



Matching coeff. (perturbative calculable)

 $\times \left(\frac{\zeta}{\mu_{1}^{2}}\right)^{K(b_{\star},\mu_{b_{\star}})/2} \left[\frac{\zeta}{Q_{0}}\right]^{-g_{K}(\mathbf{b}_{T})/2} f_{1}^{NP}(x,\mathbf{b}_{T};\zeta,Q_{0})$ 







Matching coeff. (perturbative calculable)

 $\times \left(\frac{\zeta}{\mu_b^2}\right)^{K(b_\star,\mu_{b_\star})/2} \left[\frac{\zeta}{Q_0}\right]^{-g_K(\mathbf{b}_T)/2} f_1^{NP}(x,\mathbf{b}_T;\zeta,Q_0)$ 

Collins-Soper kernel







Matching coeff. (perturbative calculable)

Collins-Soper kernel

NP part of **Collins-Soper Kernel** 







Matching coeff. (perturbative calculable)

Collins-Soper kernel

NP part of **Collins-Soper Kernel** 







Matching coeff. (perturbative calculable)

Collins-Soper kernel

NP part of **Collins-Soper Kernel** 









MAP Collaboration, arXiv 2405.13833

#### **MAPTMD24 extraction - starting points**



Global analysis of Drell-Yan and Semi-Inclusive DIS data sets: 2031 data points (DY + SIDIS)





- Perturbative accuracy: N<sup>3</sup>LL

MAP Collaboration, arXiv 2405.13833

Global analysis of Drell-Yan and Semi-Inclusive DIS data sets: 2031 data points (DY + SIDIS)





- Perturbative accuracy: N<sup>3</sup>LL

MAP Collaboration, arXiv 2405.13833

Global analysis of Drell-Yan and Semi-Inclusive DIS data sets: 2031 data points (DY + SIDIS)

NNPDF31NNLO







- Perturbative accuracy: N<sup>3</sup>LL

Number of fitted parameters: 96 Flavour dependence

MAP Collaboration, arXiv 2405.13833

Global analysis of Drell-Yan and Semi-Inclusive DIS data sets: 2031 data points (DY + SIDIS)

NNPDF31NNLO







- Perturbative accuracy: N<sup>3</sup>LL

Number of fitted parameters: 96 Flavour dependence

MAP Collaboration, arXiv 2405.13833

Global analysis of Drell-Yan and Semi-Inclusive DIS data sets: 2031 data points (DY + SIDIS)

#### NNPDF31NNLO



**TMD PDFs**  $u, d, \bar{u}, \bar{d}, sea$ 





- Perturbative accuracy: N<sup>3</sup>LL

Number of fitted parameters: 96 Flavour dependence

MAP Collaboration, arXiv 2405.13833

Global analysis of Drell-Yan and Semi-Inclusive DIS data sets: 2031 data points (DY + SIDIS)

#### NPDF31NNLO



**TMD PDFs**  $u, d, \bar{u}, d, sea$ > TMD FFs  $u \to \pi^+$ , sea  $\to \pi^+$ 





- Perturbative accuracy: N<sup>3</sup>LL

Number of fitted parameters: 96 Flavour dependence

MAP Collaboration, arXiv 2405.13833

Global analysis of Drell-Yan and Semi-Inclusive DIS data sets: 2031 data points (DY + SIDIS)

# NPDF31NNLO **MAPFF10NNLO TMD PDFs** $u, d, \bar{u}, \bar{d}, sea$

 $\rightarrow$  TMD FFs  $u \rightarrow \pi^+$ , sea  $\rightarrow \pi^+$ 

**TMD FFs**  $u \to K^+, \bar{s} \to K^+, sea \to K^+$ 







- Perturbative accuracy: N<sup>3</sup>LL

Number of fitted parameters: 96 Flavour dependence

Extremely good description:  $\chi^2/N_{data} = 1.08$ 



Global analysis of Drell-Yan and Semi-Inclusive DIS data sets: 2031 data points (DY + SIDIS)

# NPDF31NNLO **MAPFF10NNLO TMD PDFs** $u, d, \bar{u}, \bar{d}, sea$ $\rightarrow$ TMD FFs $u \rightarrow \pi^+$ , sea $\rightarrow \pi^+$ **TMD FFs** $u \to K^+, \bar{s} \to K^+, sea \to K^+$











































#### EIC pseudodata

generated by Gregory Matousek



#### EIC pseudodata

generated by Gregory Matousek

#### MAP24 TMDs

#### predictions using the MAP24 global fit

https://github.com/ MapCollaboration/NangaParbat







#### MAP24 TMDs

#### predictions using the MAP24 global fit

https://github.com/ MapCollaboration/NangaParbat

we took the *average kinematic* variables of each point







#### MAP24 TMDs

#### predictions using the MAP24 global fit

https://github.com/ MapCollaboration/NangaParbat






























5x41 in  $\pi^+$ 





5x41 in  $\pi^+$ 





#### 5x41 in $\pi^+$

### 10x100 in $\pi^+$





#### 5x41 in $\pi^+$

### 10x100 in $\pi^+$





#### 5x41 in $\pi^+$

### $10 \times 100$ in $\pi^+$





#### 5x41 in $\pi^+$

### $10 \times 100$ in $\pi^+$





Number of <u>datapoints</u>

#### 5x41 in $\pi^+$

### 10x100 in $\pi^+$





Number of <u>datapoints</u>

5x41 in  $\pi^+$ 

1273

### $10 \times 100$ in $\pi^+$





Number of <u>datapoints</u>

1273

5x41 in  $\pi^+$ 

 $10 \times 100$  in  $\pi^+$ 

1611





Number of <u>datapoints</u>

- 5x41 in  $\pi^+$ 1273
- $10 \times 100$  in  $\pi^+$
- 18x275 in  $\pi^+$

1611





Number of <u>datapoints</u>

1273

10x100 in  $\pi^+$ 

5x41 in  $\pi^+$ 

18x275 in  $\pi^+$ 

1611

1648

MAPTMD24





Number of <u>datapoints</u>

1273

 $10 \times 100$  in  $\pi^+$ 

5x41 in  $\pi^+$ 

18x275 in  $\pi^+$ 

1611

1648

MAPTMD24 2031





Number of <u>datapoints</u>

1273

10x100 in  $\pi^+$ 

5x41 in  $\pi^+$ 

**18x275** in  $\pi^+$ 

1611

1648

MAPTMD24 2031

TOTAL





Number of <u>datapoints</u>

1273

1611

1648

10x100 in  $\pi^+$ 

5x41 in  $\pi^+$ 

**18x275** in  $\pi^+$ 

MAPTMD24 2031

6563 TOTAL





Number of <u>datapoints</u>

1273

10x100 in  $\pi^+$ 

5x41 in  $\pi^+$ 

18x275 in  $\pi^+$ 

MAPTMD24

TOTAL

1611

2031

1648









#### **TMDs** at **Q** = 2 GeV and **x** = 0.001



### TMDs at Q = 2 GeV and x = 0.001





### TMDs at Q = 2 GeV and x = 0.001







### TMDs at Q = 2 GeV and x = 0.001



#### **Decreasing of the uncertainty bands**







To better visualize the reduction in uncertainty bands, instead of plotting the TMDs, we can plot their relative uncertainties:



 $f_1^q(x, |\mathbf{k}_T^2|; Q, Q^2) - \langle f_1^q(x, |\mathbf{k}_T^2|; Q, Q^2) \rangle$  $\langle f_1^q(x, |\mathbf{k}_T^2|; Q, Q^2) \rangle$ 

To better visualize the reduction in uncertainty bands, instead of plotting the TMDs, we can plot their relative uncertainties:









#### Strong impact at different values of x









#### Strong impact at different values of x







#### Strong impact at different values of x



12

1.0







#### Strong impact at different values of x







#### Strong impact at different values of x

**Uncertainties in**  $k_{\perp} = 0$
### **Uncertainties in** $k_{\perp} = 0$

| <b>MAP24</b>             | $x = 10^{-1}$ | $x = 10^{-2}$ | $x = 10^{-1}$ |
|--------------------------|---------------|---------------|---------------|
| $\mathcal{U}$            | 3.3 %         | 5.7 %         | 10.6 %        |
| d                        | 12.7 %        | 16.8 %        | 27.3 %        |
| $\overline{\mathcal{U}}$ | 10.6 %        | 13.1 %        | 16.9 %        |
| đ                        | 12.4 %        | 16.6 %        | 30.5 %        |
| sea                      | 41.2 %        | 39.4 %        | 62.2 %        |



| <b>MAP24</b>             | $x = 10^{-1}$ | $x = 10^{-2}$ | $x = 10^{-3}$ | MAP+EIC        | $x = 10^{-1}$ | $x = 10^{-2}$ | $x = \hat{x}$ |
|--------------------------|---------------|---------------|---------------|----------------|---------------|---------------|---------------|
| U                        | 3.3 %         | 5.7 %         | 10.6 %        | $\mathcal{U}$  | 1.4 %         | 3.6 %         | 5.2           |
| d                        | 12.7 %        | 16.8 %        | 27.3 %        | d              | 3.3 %         | 8.0 %         | 10.6          |
| $\overline{\mathcal{U}}$ | 10.6 %        | 13.1 %        | 16.9 %        | $\bar{u}$      | 8.1 %         | 8.0 %         | 9.0           |
| đ                        | 12.4 %        | 16.6 %        | 30.5 %        | $\overline{d}$ | 5.8 %         | 7.7 %         | 12.5          |
| sea                      | 41.2 %        | 39.4 %        | 62.2 %        | sea            | 19.9 %        | 24.2 %        | 29.(          |

**Uncertainties in**  $k_{\perp} = 0$ 



| <b>MAP24</b>             | $x = 10^{-1}$ | $x = 10^{-2}$ | $x = 10^{-3}$ | MAP+EIC                  | $x = 10^{-1}$ | $x = 10^{-2}$ | x = 1 |
|--------------------------|---------------|---------------|---------------|--------------------------|---------------|---------------|-------|
| ${\cal U}$               | 3.3 %         | 5.7 %         | 10.6 %        | $\mathcal{U}$            | 1.4 %         | 3.6 %         | 5.2   |
| d                        | 12.7 %        | 16.8 %        | 27.3 %        | d                        | 3.3 %         | 8.0 %         | 10.6  |
| $\overline{\mathcal{U}}$ | 10.6 %        | 13.1 %        | 16.9 %        | $\overline{\mathcal{U}}$ | 8.1 %         | 8.0 %         | 9.0   |
| đ                        | 12.4 %        | 16.6 %        | 30.5 %        | $\bar{d}$                | 5.8 %         | 7.7 %         | 12.5  |
| sea                      | 41.2 %        | 39.4 %        | 62.2 %        | sea                      | 19.9 %        | 24.2 %        | 29.0  |

With the addition of *EIC pseudodata*, the uncertainties for almost all scenarios decrease by approximately 50% or more

Uncertainties in  $k_{\perp} = 0$ 



• EIC will have a significant impact on the unpolarized TMD PDFs

### 

### It will cover a large region not covered by presented data

EIC will have a significant impact on the unpolarized TMD PDFs

- EIC will have a significant impact on the unpolarized TMD PDFs
  - It will cover a large region not covered by presented data
  - From EIC Pseudodata Fits we have encouraging results on uncertainties reduction for all the flavors.



- EIC will have a significant impact on the unpolarized TMD PDFs
  - It will cover a large region not covered by presented data
  - From EIC Pseudodata Fits we have encouraging results on uncertainties reduction for all the flavors.
- Start to study the impact on the TMD FFs, even if it's more complicated



- EIC will have a significant impact on the unpolarized TMD PDFs
  - It will cover a large region not covered by presented data
  - From EIC Pseudodata Fits we have encouraging results on uncertainties reduction for all the flavors.
- Start to study the impact on the TMD FFs, even if it's more complicated
- A Include also other EIC energy configurations.

