Dirac neutrinos and the matter asymmetry of our universe

Julian Heeck

Brookhaven National Laboratory

7/26/2024

Standard Model of Particle Physics

[wikipedia]

Masses in the Standard Model

- $SU(2)_L \times U(1)_Y$ gauge symmetry forbids mass terms.
- Masses via spontaneous symmetry breaking $\rightarrow U(1)_{\rm EM}$.
- Higgs-fermion couplings:

$$
\mathcal{L}_{\rm SM} \supset y_f \overline{f}_L H f_R + h.c.
$$

$$
\rightarrow y_f \langle H \rangle \overline{f}_L f_R + h.c.
$$

$$
m_f = v_f \times 174 \text{ GeV}
$$

• For neutrinos: no ν_R !

Julian Heeck - BNL '24

The 3 neutrinos $\nu_{e,\mu,\tau}$ in the SM are massless.

Neutrinos oscillate!

- Neutrino oscillations are evidence for neutrino masses and mixing!
- $\nu_{e,\mu,\tau}$ are not the mass eigenstates.

Kajita & McDonald '15

- Mass splittings are tiny: $|m_3^2 - m_1^2| \simeq 2 \times 10^{-3} \text{ eV}^2$, $m_2^2 - m_1^2 \simeq 8 \times 10^{-5} \text{ eV}^2$.
- Absolute masses unknown but below 0.8 eV. [KATRIN '22]
- Experimental program continues to pin down parameters (phases, mass scale, ordering).

Implications for theory?

Neutrino mass $=$ new particles

- Dirac neutrinos:
	- $-\nu=\nu_L+\nu_R\neq\bar{\nu}$.
	- $\mathsf{U(1)}_{\text{\tiny L}}$ conserved.
	- $-\nu_R$ - ν_L -Higgs coupling:

$$
m_{\nu} = y_{\nu} \langle H \rangle
$$

= 1 eV \left(\frac{y_{\nu}}{10^{-11}}\right)

- Tiny Yukawa couplings.
- $\nu_{\rm R}$ is gauge singlet \rightarrow difficult to see.

How to see Dirac neutrinos?

- **Dirac neutrinos:**
	- $-\nu = \nu_L + \nu_R \neq \bar{\nu}$.
	- $\mathsf{U(1)}_{\text{\tiny L}}$ conserved.
	- $-\nu_R$ - ν_L -Higgs coupling:

$$
m_{\nu} = y_{\nu} \langle H \rangle
$$

= 1 eV \left(\frac{y_{\nu}}{10^{-11}}\right)

- Tiny Yukawa couplings.
- $\nu_{\rm R}$ is gauge singlet \rightarrow difficult to see.

Julian Heeck - BNL '244-2007

- $\nu_{\rm R}$ are ultra-light new particles.
	- Contribute to early-universe radiation density $N_{\text{eff}} \propto \rho_{\text{radiation}}/\rho_{\gamma}$?
	- Not via tiny Higgs couplings. [Shapiro+, '80; recent: Luo+, '21]
	- Maybe via Hawking radiation. [Hooper+, '19; Lunardini+, '19; Das+, '23]
	- ν_R has additional interactions in many models $\rightarrow \Delta N_{\text{eff}}$! [Steigman+, '79; Olive+, '81; Barger+, '03]

Dirac neutrinos = extra radiation?

Only option? No!

- Dirac neutrinos:
	- $-\nu = \nu_L + \nu_R \neq \bar{\nu}$.
	- $\mathsf{U(1)}_{\text{\tiny L}}$ conserved.
	- $-\nu_R$ - ν_L -Higgs coupling:

$$
m_{\nu} = y_{\nu} \langle H \rangle
$$

= 1 eV \left(\frac{y_{\nu}}{10^{-11}}\right)

- Tiny Yukawa couplings.
- $\nu_{\rm R}$ is gauge singlet \rightarrow difficult to see.

Majorana neutrinos:

$$
-\nu=\nu_{\mathsf{L}}+\nu_{\mathsf{L}}^{\mathsf{c}}=\bar{\nu}.
$$

- U(1)_L broken.
- Add $m_M \overline{\nu}_R^c \nu_R$?
- Or scalar SU(2) triplet Δ: $\mathcal{L} \supset y_{\alpha\beta} \overline{\mathsf{L}}_{\alpha}^{\mathsf{c}} \Delta \mathsf{L}_{\beta} - \mu \mathsf{H} \Delta \mathsf{H}$ \ldots / \sqcup \2

$$
\Rightarrow m_{\nu} \simeq y \langle \Delta \rangle \sim y \frac{\mu \langle H \rangle}{M_{\Delta}^2}
$$

– New particles often weakly coupled or heavy...

 $\overline{}$ ∞ models give the same neutrino oscillation formula!

How to see Majorana neutrinos?

Majorana neutrinos:

- Add $m_M \overline{\nu}_R^c \nu_R$?
- Or scalar SU(2) triplet Δ: $\mathcal{L} \supset y_{\alpha\beta} \overline{\mathsf{L}}_{\alpha}^{\mathsf{c}} \Delta \mathsf{L}_{\beta} - \mu \mathsf{H} \Delta \mathsf{H}$ $1 - 10$

$$
\rightarrow m_{\nu} \simeq y \langle \Delta \rangle \sim y \frac{\mu \langle H \rangle^2}{M_{\Delta}^2}
$$

– New particles often weakly coupled or heavy...

$\Delta L = 2$:

 \overline{n}

 \boldsymbol{n}

 $0\nu2\beta$

- Neutrinoless double-β decay: $(A,Z) \rightarrow (A,Z+2) + 2 e^{-}$ in β stable isotopes.
- Current limits $\sim 10^{26}$ yr.
- $0v2β$ ⇔ Majorana ν.

 W^{-}

 W^-

Normal

Inverted

[Review: Perez, Wise, Heeck et al, 2208.00010]

How to see Majorana neutrinos?

Majorana neutrinos:

 $-\nu = \nu_L + \nu^c = \bar{\nu}.$

Generically 0ν2β, but model-dependent interference.

Everything else model dependent as well: lepton flavor violation, collider signatures, …

- Add $m_M \overline{\nu}_R^c \nu_R$?

 $-\mathcal{U}(1)$ _L broken.

- Or scalar SU(2) triplet Δ: $\mathcal{L} \supset y_{\alpha\beta} \overline{\mathsf{L}}_{\alpha}^{\mathsf{c}} \Delta \mathsf{L}_{\beta} - \mu \mathsf{H} \Delta \mathsf{H}$ $\rightarrow m_{\nu} \simeq y \langle \Delta \rangle \sim y \frac{\mu \langle H \rangle^2}{M_{\Lambda}^2}.$
- New particles often weakly coupled or heavy...

The seesaw mechanism

• Add ν_R and allow for Majorana mass term:

$$
\mathcal{L} \supset -y\,\overline{\nu}_L\,H\,\nu_R - \frac{1}{2}m_M\overline{\nu}_R^c\nu_R + h.c.
$$

• Full mass matrix for $m_\text{M}\gg m_\text{D} = \mathrm{y} \langle \mathsf{H}\rangle$: [Minkowski, PLB '77]

$$
\begin{pmatrix} 0 & m_D \\ m_D^\mathsf{T} & m_M \end{pmatrix} \simeq V^* \begin{pmatrix} - \, m_D m_M^{-1} m_D^\mathsf{T} & 0 \\ 0 & m_M \end{pmatrix} V^\dagger
$$

• Majorana neutrino masses suppressed by m_{M} : $\begin{array}{ccc} \n\begin{array}{ccc} \n\end{array} & \n\begin{array}{ccc} \n\end{array} & \n\end{array}$

$$
\mathsf{m}_\nu\simeq\mathsf{m}_\mathsf{D}\mathsf{m}_\mathsf{M}^{-1}\mathsf{m}_\mathsf{D}^\mathsf{T}=1\,\mathsf{eV}\,\left(\tfrac{\mathsf{m}_\mathsf{D}}{100\,\mathsf{GeV}}\right)^2\left(\tfrac{10^{13}\,\mathsf{GeV}}{\mathsf{m}_\mathsf{M}}\right)\,.
$$

 \bullet V_R - V_L mixing matrix $\sqrt{N_R}$ Maive scaling not true

with fine-tuning or structure in m_D!

Detection of heavy steriles

- Lepton flavor violation could be detectable now: [Cheng & Li, '80] Not true with $\frac{\Gamma(\ell_{\alpha} \to \ell_{\beta} \gamma)}{\Gamma(\ell_{\alpha} \to \ell_{\beta} \nu_{\alpha} \overline{\nu}_{\beta})} \simeq \frac{3 \alpha_{\rm EM}}{8 \pi} |(\mathsf{m}_{\rm D} \mathsf{m}_{\rm M}^{-2} \mathsf{m}_{\rm D}^{\dagger})_{\alpha \beta}|^2 = \mathcal{O}(\mathsf{m}_{\nu}^2 / \mathsf{m}_{\rm M}^2)?$ fine-tuning or
- For sub-TeV N: direct production possible! [Keung & Senjanović, PRL '83]

• N mass vs mixing angle

$$
V\sim m_D m_M^{-1}=\mathcal{O}(\sqrt{m_\nu/m_M})
$$

spans huge parameter space.

structure in m_D!

Current constraints on ν e mixing angle

Future constraints on ν e mixing angle

Early universe

- Add ν_R and allow for Majorana mass term: $\mathcal{L} \supset -y \bar{L} H \nu_R - \frac{1}{2} m_M \bar{\nu}_R^c \nu_R + h.c.$
- Majorana neutrino masses suppressed by $m_M \gg m_D = y\langle H \rangle$: $m_{\nu} \simeq m_{\rm D} m_{\rm M}^{-1} m_{\rm D}^{\rm T} = 1 \, \text{eV} \, \left(\frac{m_{\rm D}}{100 \, \text{GeV}} \right)^2 \left(\frac{10^{13} \, \text{GeV}}{m_{\rm M}} \right).$
- If universe reached T \sim m_M: thermalized N from large y.
	- $-L = 2$ interactions drive any lepton asymmetry to 0.

16

Early universe

- Add ν_R and allow for Majorana mass term: $\mathcal{L} \supset -y \bar{L} H \nu_R - \frac{1}{2} m_M \bar{\nu}_R^c \nu_R + h.c.$
- Majorana neutrino masses suppressed by $m_M \gg m_D = y \langle H \rangle$: $m_{\nu} \simeq m_{\rm D} m_{\rm M}^{-1} m_{\rm D}^{\rm T} = 1 \, \text{eV} \, \left(\frac{m_{\rm D}}{100 \, \text{GeV}} \right)^2 \left(\frac{10^{13} \, \text{GeV}}{m_{\rm M}} \right).$
- If universe reached T \sim m_M: thermalized N from large y.
	- $-\Delta L = 2$ interactions drive any lepton asymmetry to 0.
	- Oh no! Sphalerons convert $L \leftrightarrow B$, so baryon asymmetry is driven to 0! ϵ v_{μ} Δ B = Δ L

['t Hooft, '76; Klinkhamer & Manton '84; Kuzmin, Rubakov, Shaposhnikov, '85]

The baryon asymmetry of our universe

- Visible universe only contains matter, no anti-matter.
	- No signs of annihilation from border regions. [Steigman '76]
- Symmetric universe would have

$$
\frac{{\mathsf n}_{\mathsf b}}{{\mathsf n}_{\gamma}} = \frac{{\mathsf n}_{\bar{{\mathsf b}}}}{{\mathsf n}_{\gamma}} \sim 10^{-19}
$$

- Nuclear abundances in Big Bang nucleosynthesis (T = MeV): $\rm{n_{b}}/n_{\gamma} \simeq 6 \times 10^{-10}$
- Consistent with cosmic microwave background value at $T = eV$.

⇒ baryon asymmetry

Bug vs. feature

- Thermalized heavy Majorana neutrinos N could **erase** ΔB:
	- Provides limits on parameter space…
- Out-of-equilibrium N could generate ΔB! [Fukugita & Yanagida, '86]
	- Satisfies Sakharov's conditions: [Sakharov '67]
		- B-L violation
		- C and CP violation
		- Out-of-equilibrium reactions
	- Dynamical baryo-genesis through lepto-genesis even for initial $\Delta B = 0!$
	- Perfect/required for inflationary models.

Leptogenesis [Fukugita & Yanagida, PLB '86]

Heavy Majoranas N decay out of equilibrium into LH & LH.

- Loop-level CP asymmetry generates lepton asymmetry.
- Sphalerons convert this into baryon asymmetry.
- Works easiest for N mass above 10⁹ GeV, [Davidson & Ibarra, PLB '02] but can be pushed lower.
- Fits very well with seesaw idea and observed mass splittings.

Are Dirac neutrinos useless for BAU?

- Majorana neutrino models can use $\Delta L = 2$ for leptogenesis.
- Can *Dirac neutrinos* do anything for BAU?
- Yes! Two simple ideas:
- **Dirac leptogenesis**
	- ΔL is fine with Dirac ν, as long as $\Delta L \neq 2$.
	- $-$ Use $\Delta L = 4$ for lepton asymmetry.
	- Sphalerons → ΔB. [**Heeck**, 1307.2241]
- **Neutrinogenesis**
	- B-L conserved here.
	- ν_κ decoupled from SM bath, can hide ΔL in there!
	- Create $\Delta v_{\rm _R}$, matched by Δ(B-L) in SM bath.
	- Sphalerons → ΔB. [Dick, Lindner, Ratz, Wright, PRL '00]

Lepton-number-violating Dirac neutrinos

• Simplest realization: gauged $U(1)_{B-L}$, three v_R^2 -1, one scalar $\phi \sim 4$ to break B-L, one scalar $\chi \sim -2$ as mediator:

 $\mathsf{L} \supset \mathsf{y}$ L H $\nu_{\mathsf{R}} + \kappa \chi \overline{\nu}_{\mathsf{R}} \nu_{\mathsf{R}}^{\mathsf{C}} + \mu \phi \chi^2 + \mathsf{h.c.}$ [Heeck, 1307.2241]

- $\langle \phi \rangle$ breaks $U(1)$ to a Z_4 .
- x is split into real and imaginary parts.
- Dirac nature protected and still $\Delta L = 4$ processes:

[Heeck & Rodejohann, 1306.0580; NEMO-3, PRL '17; Fonseca & Hirsch, 1804.10545] ● Test via *neutrinoless quadruple beta decay*?

Lepton-number-violating Dirac neutrinos

• Leptogenesis: add second copy of mediator χ.

-
$$
\chi_{1,2}
$$
 split into 4 real scalars Ξ :
\n $\mathcal{L} \supset \frac{1}{2} V_{\alpha\beta}^j \Xi_j \overline{\nu}_{R,\alpha} V_{R,\beta}^c + \frac{1}{2} \overline{V}_{\alpha\beta}^j \Xi_j \overline{\nu}_{R,\alpha}^c \nu_{R,\beta}$. [Heeck, 1307.2241]

– Lightest Ξ decays (out-of-equilibrium) into ${\bm \nu}_{{}_{\mathsf{R}}}{\bm \nu}_{{}_{\mathsf{R}}}$ and ${\bm \nu}_{{}_{\mathsf{R}}}{\bm \nu}_{{}_{\mathsf{R}}}.$

– CP asymmetry:

$$
Y_{\nu_R} \equiv \frac{n_{\nu_R}}{s} \sim \frac{1}{g_*} \frac{\Gamma(\Xi_i \to \nu_R \nu_R) - \Gamma(\Xi_i \to \nu_R^c \nu_R^c)}{\Gamma(\Xi_i \to \nu_R \nu_R) + \Gamma(\Xi_i \to \nu_R^c \nu_R^c)}
$$

$$
\Rightarrow \text{asymmetry in } v_R \text{ vs } \overline{v}_R
$$

Lepton-number-violating Dirac neutrinos

- SM bath does not see v_{R} asymmetry b/c of tiny Yukawa...
- Easy fix: add second Higgs doublet $H₂$ with larger Yukawa:
	- $-$ Neutrinophilic 2HDM: H_2 with tiny VEV:

[Wang, Wang, Yang, '06; Gabriel & Nandi, '07; Davidson & Logan, '09, '10]

⇒ Small Dirac neutrino masses without tiny Yukawas.

- $\,$ $\rm v_{_R}$ asymmetry transferred to L doublet via H $_{_2}$.
- (B-L effectively conserved after Ξ decoupling.)
- Transferred to baryon asymmetry by sphalerons. \sqrt
- Dirac leptogenesis similar to Majorana leptogenesis.
- Requires thermalization of v_R : $N_{\text{eff}} > 3!$

Number of effective neutrinos: N_{eff}

• $N_{\text{eff}}^{\text{SM}} \simeq 3$.

earlier time

Number of effective neutrinos: N_{eff}

- $N_{\text{eff}}^{\text{SM}} \simeq 3$.
- Improvement on ΔN_{eff} in CMB-S4. [Abazajian+, 1907.04473]
- Will probe if 3 $v_{\rm B}$ were *ever* thermal!
- Strong constraint for any Dirac ν model. [**Heeck** & Abazajian, 1908.03286]

Testable $\Delta L = 4$ Dirac leptogenesis

earlier time

Alternative: Neutrinogenesis

- [Dick, Lindner, Ratz, Wright, PRL '00]
- Non-thermalization of v_{R} might be key for matter/antimatter.
- Idea: new heavy particle X decays out of equilibrium into V_{LR} .

- Loop-level CP asymmetry ε: $\Delta \nu = \nu_L - \bar{\nu}_L = -(\nu_R - \bar{\nu}_R) \neq 0$
- $v_{\rm R}$ are out of equilibrium, sphalerons convert Δν into baryon asymmetry

$$
\mathsf{Y}_{\Delta \mathsf{B}} \simeq 10^{-3} \varepsilon \eta \overset{!}{\simeq} 10^{-10}.
$$

Julian Heeck - BNL '24

[**Heeck**, Heisig, Thapa, 2304.09893]

Dirac leptogenesis models

[**Heeck**, Heisig, Thapa, 2304.09893]

- B-L is always conserved.
- X always has gauge interactions (same as SUSY sparticles).
	- Still not thermalized if m_χ is large, X can freeze in/out.
- $v_{\rm R}$ number is broken, X has decays to $v_{\rm R}$ and SM.
	- Hierarchy of rates $X \rightarrow V_R$ and $X \rightarrow SM$ important.
	- $-|\varepsilon| \le \min(B_R, B_L).$

Dirac leptogenesis models

[**Heeck**, Heisig, Thapa, 2304.09893]

- B-L is always conserved.
- X always has gauge interactions (same as SUSY sparticles).
	- Still not thermalized if m_χ is large, X can freeze in/out.
- $v_{\rm R}$ number is broken, X has decays to $v_{\rm R}$ and SM.
	- Hierarchy of rates $X \rightarrow V_R$ and $X \rightarrow SM$ important.
	- $-|\varepsilon| \le \min(B_R, B_L).$

³²

Neutrinogenesis

- Very efficient asymmetry generation!
- Only works due to tiny Dirac neutrino masses.
- X decays into (high-energy) v_g : testable ΔN $_{\rm eff}$!
- More fun with Dirac leptogenesis:

– Don't even need sphalerons, can generate $\Delta B = (\nu_R - \bar{\nu}_R) \neq 0$ directly! Predicts proton decay $p \rightarrow K^+ \bar{\nu}_R$! [**Heeck**, Heisig, Thapa, 2304.09893]

Neutrinogenesis is fascinating!

Neutrinogenesis via scattering 38

- What if the universe never reached T ~ M_{χ} ?
	- Scattering via off-shell X.
	- CP asymmetry now requires *three* different X couplings.

- No source term for v_R asymmetry: wash in.
- Works well, T_{reh} < 10^{12} GeV requires careful study of flavor effects.

 $\frac{1}{2}$ [Blažek, **Heeck,** Heisig, Maták, Zaujec, 2404.16934]

Summary

- Dirac vs. Majorana is an important question.
- Majorana neutrinos have more parameters and more pheno:
	- 0νββ, collider signatures, lepton flavor violation,…
	- seesaw and leptogenesis are nice (and untestable)!
- $\bullet~$ Dirac neutrinos *most economic* M $_{_{\mathrm{v}}}$ solution, and can still
	- explain baryon asymmetry by exploiting ν properties;
	- generically expect enhanced N_{eff} from ultra-light ν_R.
- Fate of lepton number is experimental question!

Dirac neutrinos deserve attention too!

Backup

Julian Heeck - BNL '24

Neutrinoless Quadruple-Beta Decay 0ν4β

$$
(A,Z)\rightarrow (A,Z+4)+4e^-
$$
 via $\mathcal{O}=(\overline{\nu}_L^c \nu_L)^2/\Lambda^2$:

[**Heeck** & Rodejohann, 1306.0580]

Candidate Nuclei

- Experimental aspects of $0\nu 4\beta$ independent of underlying mechanism.
- Need beta-stable initial state:

• Decay modes: $0\nu 4\beta$ and $2\nu 2\beta$ $(0\nu 2\beta$ forbidden by \mathbb{Z}_4^L).

[**Heeck** & Rodejohann, 1306.0580]

Candidates for Nuclear ∆L = 4 Processes

Julian Heeck - BNL '24

[**Heeck** & Rodejohann, 1306.0580]

Best Candidate: Neodymium

Decay channels:

- ${}_{60}^{150}\text{Nd} \rightarrow {}_{62}^{150}\text{Sm}$ via 2 ν 2 β ($\tau_{1/2}^{2\nu2\beta} \simeq 7 \times 10^{18}$ y): two neutrinos and two electrons are emitted; the electrons have a continuous energy spectrum and total energy $E_{e,1} + E_{e,2} < 3.371 \,\text{MeV}$.
- ${}_{60}^{150}\text{Nd} \rightarrow {}_{64}^{150}\text{Gd}$ via 0 ν 4 β . Four electrons with continuous energy spectrum and summed energy $Q_{0\nu4\beta} = 2.079 \,\text{MeV}$ are emitted. In this special case, the daughter nucleus is α -unstable with half-life $\tau_{1/2}^{\alpha}({}_{64}^{150}\text{Gd} \rightarrow {}_{62}^{146}\text{Sm}) \simeq 2 \times 10^6 \text{ y}.$

Neutrinoless Quadruple-Beta Decay Rate

 $(A, Z) \rightarrow (A, Z + 4) + 4e^-$ via $\mathcal{O} = (\overline{\nu}_1^c \nu_L)^2 / \Lambda^2$.

• Very naive comparison with competing channel $2\nu2\beta$:

$$
\frac{\tau_{1/2}^{0\nu 4\beta}}{\tau_{1/2}^{2\nu 2\beta}}\simeq\left(\frac{Q_{0\nu 2\beta}}{Q_{0\nu 4\beta}}\right)^{11}\left(\frac{\Lambda^4}{q^{12}\mathsf{G}_{\mathsf{F}}^4}\right)\simeq10^{46}\,\left(\frac{\Lambda}{\rm TeV}\right)^4,
$$

with $|q| \sim p_{\nu} \sim 1 \,\mathrm{fm}^{-1} \simeq 100 \,\mathrm{MeV}$.

- For $(\overline{\nu}_R^c \nu_R)^2/\Lambda^2$ additional mass-flip suppression $(m_\nu/q)^8$ or right-handed currents...
- Estimated rate in toy model unobservably small. Elaborate models with resonances overcome this?

[**Heeck** & Rodejohann, 1306.0580; Fonseca & Hirsch, 1804.10545]

Z' of B-L:

B-L with Dirac neutrinos

Julian Heeck - BNL '24