Dirac neutrinos and the matter asymmetry of our universe

Julian Heeck

Brookhaven National Laboratory

7/26/2024

Standard Model of Particle Physics

[wikipedia]

≈126 GeV/c²

Masses in the Standard Model

- $SU(2)_L \times U(1)_Y$ gauge symmetry forbids mass terms.
- Masses via spontaneous symmetry breaking \rightarrow U(1) $_{\rm EM}$.
- Higgs-fermion couplings:

 $\mathcal{L}_{\rm SM} \supset \ y_f \, \overline{f}_L \, H \, f_R + h.c.$

$$\rightarrow \begin{array}{c} y_{f} \langle H \rangle \overline{f}_{L} f_{R} + h.c. \\ \mathbf{M}_{f} = y_{f} \times 174 \text{ GeV} \end{array}$$

For neutrinos: no
$$\nu_R$$
!

The 3 neutrinos $\nu_{e,\mu,\tau}$ in the SM are massless.

Neutrinos oscillate!

- Neutrino oscillations are evidence for neutrino masses and mixing!
- $\nu_{e,\mu,\tau}$ are not the mass eigenstates.

• Mass splittings are tiny:

Kajita & McDonald '15

- $|m_3^2-m_1^2|\simeq 2\times 10^{-3}\,\text{eV}^2\,, \quad m_2^2-m_1^2\simeq 8\times 10^{-5}\,\text{eV}^2\,.$
- Absolute masses unknown but below 0.8 eV. [KATRIN '22]
- Experimental program continues to pin down parameters (phases, mass scale, ordering).

Implications for theory?

Neutrino mass = new particles

- Dirac neutrinos:
 - $-\nu = \nu_{\mathsf{L}} + \nu_{\mathsf{R}} \neq \bar{\nu}.$
 - $U(1)_{L}$ conserved.
 - $\nu_{\rm R}$ $\nu_{\rm L}$ -Higgs coupling:

$$\begin{split} \mathsf{m}_{\nu} &= \mathsf{y}_{\nu} \langle \mathsf{H} \rangle \\ &= 1 \, \mathsf{eV} \left(\frac{\mathsf{y}_{\nu}}{\mathsf{10}^{-11}} \right) \end{split}$$

- Tiny Yukawa couplings.
- $\nu_{\rm R}$ is gauge singlet → difficult to see.

How to see Dirac neutrinos?

- Dirac neutrinos:
 - $-\nu = \nu_{\mathsf{L}} + \nu_{\mathsf{R}} \neq \bar{\nu}.$
 - $U(1)_{L}$ conserved.
 - $\nu_{\rm R}$ $\nu_{\rm L}$ -Higgs coupling:

$$\begin{split} \mathsf{m}_{\nu} &= \mathsf{y}_{\nu} \langle \mathsf{H} \rangle \\ &= 1 \, \mathsf{eV} \left(\frac{\mathsf{y}_{\nu}}{10^{-11}} \right) \end{split}$$

- Tiny Yukawa couplings. •
- $\nu_{\rm R}$ is gauge singlet → difficult to see.

- $\nu_{\rm R}$ are ultra-light new particles.
 - Contribute to early-universe radiation density $N_{\rm eff} \propto \rho_{\rm radiation}/\rho_{\gamma}?$
 - Not via tiny Higgs couplings.
 [Shapiro+, '80; recent: Luo+, '21]
 - Maybe via Hawking radiation.
 [Hooper+, '19; Lunardini+, '19; Das+, '23]
 - $\nu_{\rm R}$ has additional interactions in many models $\rightarrow \Delta N_{\rm eff}!$ [Steigman+, '79; Olive+, '81; Barger+, '03]

Dirac neutrinos = extra radiation?

Only option? No!

- Dirac neutrinos:
 - $-\nu = \nu_{\mathsf{L}} + \nu_{\mathsf{R}} \neq \bar{\nu}.$
 - $U(1)_{L}$ conserved.
 - $\nu_{\rm R}$ $\nu_{\rm L}$ -Higgs coupling:

$$egin{aligned} \mathsf{m}_{
u} &= \mathsf{y}_{
u} \langle \mathsf{H}
angle \ &= 1 \, \mathsf{eV} \left(rac{\mathsf{y}_{
u}}{10^{-11}}
ight) \end{aligned}$$

- Tiny Yukawa couplings.
- $\nu_{\rm R}$ is gauge singlet → difficult to see.

• Majorana neutrinos:

$$-\nu = \nu_{\mathsf{L}} + \nu_{\mathsf{L}}^{\mathsf{c}} = \bar{\nu}.$$

- $U(1)_{L}$ broken.
- Add $m_M \overline{\nu}_R^c \nu_R$?
- Or scalar SU(2) triplet Δ : $\mathcal{L} \supset y_{\alpha\beta}\overline{L}_{\alpha}^{c}\Delta L_{\beta} - \mu H\Delta H$ $\mu \langle H \rangle^{2}$

$$ightarrow {
m m}_{
u} \simeq {
m y} \langle \Delta
angle \sim {
m y} rac{\mu \langle {
m H}
angle^2}{{
m M}_{\Delta}^2}$$

 New particles often weakly coupled or heavy...

 ∞ models give the same neutrino oscillation formula!

How to see Majorana neutrinos?

• Majorana neutrinos:

$$-\nu = \nu_{\rm L} + \nu_{\rm L}^{\rm c} = \bar{\nu}.$$

$$- U(1)_{\rm L} \text{ broken.}$$

- Add $m_M \overline{\nu}_R^c \nu_R$?
- Or scalar SU(2) triplet Δ :

$$\mathcal{L} \supset \mathsf{y}_{lphaeta}\overline{\mathsf{L}}^{\mathsf{c}}_{lpha}\Delta\mathsf{L}_{eta} - \mu\mathsf{H}\Delta\mathsf{H}$$

$$ightarrow {\sf m}_{
u} \simeq {\sf y} \langle \Delta
angle \sim {\sf y} rac{\mu \langle {\sf H}
angle^2}{{\sf M}_{\Delta}^2}$$

 New particles often weakly coupled or heavy...

$\Delta L = 2$:

n

n

 $0\nu 2\beta$

- Neutrinoless double-β decay: $(A,Z) \rightarrow (A,Z+2) + 2 e^{-1}$ in β stable isotopes.
- Current limits ~ 10^{26} yr.
- $0\nu 2\beta \Leftrightarrow Majorana \nu$.

 W^{-}

 W^{-}

D

Normal

Inverted

 ν_2

[Review: Perez, Wise, **Heeck** et al, 2208.00010]

How to see Majorana neutrinos?

• Majorana neutrinos:

 $-\nu = \nu_{\mathsf{L}} + \nu_{\mathsf{L}}^{\mathsf{c}} = \overline{\nu}.$

U(1), broken.

Generically $0\nu 2\beta$, but model-dependent interference.

Everything else model dependent as well: lepton flavor violation, collider signatures, ...

- Add $m_M \overline{\nu}_R^c \nu_R$?
- $$\begin{split} & \text{ Or scalar SU(2) triplet } \Delta: \\ & \mathcal{L} \supset y_{\alpha\beta}\overline{L}_{\alpha}^{c}\Delta L_{\beta} \mu H\Delta H \\ & \rightarrow m_{\nu} \simeq y \langle \Delta \rangle \sim y \frac{\mu \langle H \rangle^{2}}{M_{\Delta}^{2}} \,. \end{split}$$
- New particles often weakly coupled or heavy...

The seesaw mechanism

• Add $\nu_{\rm R}$ and allow for Majorana mass term:

$$\mathcal{L} \supset -y \,\overline{\nu}_{\mathsf{L}} \,\mathsf{H} \,\nu_{\mathsf{R}} - \frac{1}{2} \mathsf{m}_{\mathsf{M}} \overline{\nu}_{\mathsf{R}}^{\mathsf{c}} \nu_{\mathsf{R}} + \mathsf{h.c.}$$

- Full mass matrix for $\,m_M \gg m_D = y \langle H \rangle : \,$ [Minkowski, PLB '77]

$$\begin{pmatrix} 0 & m_D \\ m_D^T & m_M \end{pmatrix} \simeq V^* \left(\begin{array}{cc} -m_D m_M^{-1} m_D^T & 0 \\ 0 & m_M \end{pmatrix} V^\dagger$$

• Majorana neutrino masses suppressed by m_M : $m_{\nu} \simeq m_D m_M^{-1} m_D^T = 1 \, eV \, \left(\frac{m_D}{100 \, GeV}\right)^2 \left(\frac{10^{13} \, GeV}{m_M}\right).$

•
$$v_R^- v_L^-$$
 mixing matrix
 $V \sim m_D m_M^{-1} = O(\sqrt{m_\nu/m_M})$

Naive scaling not true with fine-tuning or structure in $m_D!$

Detection of heavy steriles

- Lepton flavor violation could be detectable now: [Cheng & Li, '80] $\frac{\Gamma(\ell_{\alpha} \to \ell_{\beta} \gamma)}{\Gamma(\ell_{\alpha} \to \ell_{\beta} \nu_{\alpha} \overline{\nu}_{\beta})} \simeq \frac{3\alpha_{\rm EM}}{8\pi} |(m_{\rm D} m_{\rm M}^{-2} m_{\rm D}^{\dagger})_{\alpha\beta}|^{2} = \mathcal{O}(m_{\nu}^{2}/m_{\rm M}^{2})? \quad \begin{bmatrix} \text{Not true with} \\ \text{fine-tuning or} \\ \text{structure in } m_{\rm D}! \end{bmatrix}$
- For sub-TeV N: direct production possible! [Keung & Senjanović, PRL '83]

• N mass vs mixing angle

$$V \sim m_D m_M^{-1} = \mathcal{O}(\sqrt{m_\nu/m_M})$$

spans huge parameter space.

Current constraints on v_e mixing angle

Future constraints on v_e mixing angle

Early universe

- Add ν_R and allow for Majorana mass term: $\mathcal{L} \supset -y \overline{L} H \nu_R - \frac{1}{2} m_M \overline{\nu}_R^c \nu_R + h.c.$
- Majorana neutrino masses suppressed by $m_M \gg m_D = y \langle H \rangle$: $m_{\nu} \simeq m_D m_M^{-1} m_D^T = 1 \, eV \, \left(\frac{m_D}{100 \, GeV} \right)^2 \left(\frac{10^{13} \, GeV}{m_M} \right).$
- If universe reached T ~ $m_{_{M}}$: thermalized N from large y.
 - $\Delta L = 2$ interactions drive any lepton asymmetry to 0.

Early universe

- Add ν_R and allow for Majorana mass term: $\mathcal{L} \supset -y \overline{L} H \nu_R - \frac{1}{2} m_M \overline{\nu}_R^c \nu_R + h.c.$
- Majorana neutrino masses suppressed by $m_M \gg m_D = y \langle H \rangle$: $m_{\nu} \simeq m_D m_M^{-1} m_D^T = 1 \, eV \, \left(\frac{m_D}{100 \, GeV} \right)^2 \left(\frac{10^{13} \, GeV}{m_M} \right).$
- If universe reached T ~ m_{M} : thermalized N from large y.
 - $\Delta L = 2$ interactions drive any lepton asymmetry to 0.
 - Oh no! Sphalerons convert L ↔ B,
 so baryon asymmetry
 is driven to 0!

['t Hooft, '76; Klinkhamer & Manton '84; Kuzmin, Rubakov, Shaposhnikov, '85]

The baryon asymmetry of our universe

- Visible universe only contains matter, no anti-matter.
 - No signs of annihilation from border regions. [Steigman '76]
- Symmetric universe would have

$$rac{\mathsf{n}_{\mathsf{b}}}{\mathsf{n}_{\gamma}} = rac{\mathsf{n}_{\overline{\mathsf{b}}}}{\mathsf{n}_{\gamma}} \sim 10^{-19}$$

- Nuclear abundances in Big Bang nucleosynthesis (T = MeV): $n_b/n_\gamma \simeq 6 \times 10^{-10}$
- Consistent with cosmic microwave background value at T = eV.

 \Rightarrow baryon asymmetry

Bug vs. feature

- Thermalized heavy Majorana neutrinos N could erase ΔB :
 - Provides limits on parameter space...
- Out-of-equilibrium N could generate $\Delta B!$ [Fukugita & Yanagida, '86]
 - Satisfies Sakharov's conditions: [Sakharov '67]
 - B-L violation
 - C and CP violation
 - Out-of-equilibrium reactions
 - Dynamical baryo-genesis through lepto-genesis even for initial $\Delta B = 0!$
 - Perfect/required for inflationary models.

Leptogenesis [Fukugita & Yanagida, PLB '86]

Heavy Majoranas N decay out of equilibrium into LH & LH.

- Loop-level CP asymmetry generates lepton asymmetry.
- Sphalerons convert this into baryon asymmetry.
- Works easiest for N mass above 10⁹ GeV, [Davidson & Ibarra, PLB '02] but can be pushed lower.
- Fits very well with seesaw idea and observed mass splittings.

Are Dirac neutrinos useless for BAU?

- Majorana neutrino models can use $\Delta L = 2$ for leptogenesis.
- Can *Dirac neutrinos* do anything for BAU?
- Yes! Two simple ideas:
- Dirac leptogenesis
 - ΔL is fine with Dirac ν, as long as ΔL ≠ 2.
 - Use $\Delta L = 4$ for lepton asymmetry.
 - − Sphalerons \rightarrow ΔB. [Heeck, 1307.2241]

Neutrinogenesis

- B-L conserved here.
- $\begin{array}{ll} & \ v_{_{R}} \ decoupled \ from \ SM \ bath, \\ & \ can \ hide \ \Delta L \ in \ there! \end{array}$
- Create Δv_R , matched by Δ (B-L) in SM bath.
- Sphalerons → ΔB . [Dick, Lindner, Ratz, Wright, PRL '00]

Lepton-number-violating Dirac neutrinos

• Simplest realization: gauged U(1)_{B-L}, three $v_R \sim -1$, one scalar $\phi \sim 4$ to break B-L, one scalar $\chi \sim -2$ as mediator:

 $\mathsf{L} \supset \mathsf{y}\overline{\mathsf{L}}\mathsf{H}\nu_{\mathsf{R}} + \kappa\chi\overline{\nu}_{\mathsf{R}}\nu_{\mathsf{R}}^{\mathsf{c}} + \mu\phi\chi^{2} + \mathsf{h.c.} \quad \text{[Heeck, 1307.2241]}$

- $\langle \phi \rangle$ breaks U(1) to a Z₄: $\chi \to -\chi$, lepton \to i lepton.
- χ is split into real and imaginary parts.
- Dirac nature protected and still $\Delta L = 4$ processes:

Test via neutrinoless quadruple beta decay?
 [Heeck & Rodejohann, 1306.0580; NEMO-3, PRL '17; Fonseca & Hirsch, 1804.10545]

Lepton-number-violating Dirac neutrinos

• Leptogenesis: add second copy of mediator χ.

-
$$\chi_{1,2}$$
 split into 4 *real* scalars Ξ :
 $\mathcal{L} \supset \frac{1}{2} V^{j}_{\alpha\beta} \Xi_{j} \overline{\nu}_{R,\alpha} \nu^{c}_{R,\beta} + \frac{1}{2} \overline{V}^{j}_{\alpha\beta} \Xi_{j} \overline{\nu}^{c}_{R,\alpha} \nu_{R,\beta}$. [Heeck, 1307.2241]

– Lightest Ξ decays (out-of-equilibrium) into $v_R v_R$ and $\overline{v}_R \overline{v}_R$:

- CP asymmetry:

$$Y_{\nu_R} \equiv \frac{n_{\nu_R}}{s} \sim \frac{1}{g_*} \frac{\Gamma(\Xi_i \to \nu_R \nu_R) - \Gamma(\Xi_i \to \nu_R^c \nu_R^c)}{\Gamma(\Xi_i \to \nu_R \nu_R) + \Gamma(\Xi_i \to \nu_R^c \nu_R^c)}$$

$$\Rightarrow$$
 asymmetry in v_R vs v_R

Lepton-number-violating Dirac neutrinos

- SM bath does not see v_{R} asymmetry b/c of tiny Yukawa... \neq
- Easy fix: add second Higgs doublet H_2 with larger Yukawa:
 - Neutrinophilic 2HDM: H_2 with tiny VEV: $\langle H_2 \rangle \sim eV$

[Wang, Wang, Yang, '06; Gabriel & Nandi, '07; Davidson & Logan, '09, '10]

\Rightarrow Small Dirac neutrino masses without tiny Yukawas.

- v_{R} asymmetry transferred to L doublet via H₂.
- (B-L effectively conserved after Ξ decoupling.)
- Transferred to baryon asymmetry by sphalerons. \checkmark
- Dirac leptogenesis similar to Majorana leptogenesis.
- Requires thermalization of v_{R} : $N_{eff} > 3!$

Number of effective neutrinos: N_{eff}

• $N_{eff}^{SM} \simeq 3.$

earlier time

Number of effective neutrinos: N_{eff}

- $N_{eff}^{SM} \simeq 3.$
- Improvement on ΔN_{eff} in CMB-S4.
 [Abazajian+, 1907.04473]
- Will probe if 3 v_R were *ever* thermal!
- Strong constraint for any Dirac ν model.
 [Heeck & Abazajian, 1908.03286]

Testable $\Delta L = 4$ Dirac leptogenesis

earlier time

Alternative: Neutrinogenesis

- [Dick, Lindner, Ratz, Wright, PRL '00]
- Non-thermalization of v_{R} might be key for matter/antimatter.
- Idea: new heavy particle X decays out of equilibrium into $v_{L,R}$.

- Loop-level CP asymmetry ϵ : $\Delta \nu = \nu_{L} - \bar{\nu}_{L} = -(\nu_{R} - \bar{\nu}_{R}) \neq 0$
- v_R are out of equilibrium, sphalerons convert Δv into baryon asymmetry

$$\mathsf{Y}_{\Delta\mathsf{B}}\simeq 10^{-3}arepsilon\eta\stackrel{!}{\simeq}10^{-10}.$$

Julian Heeck - BNL '24

[Heeck, Heisig, Thapa, 2304.09893]

Dirac leptogenesis models

Case	$SU(3) \times SU(2) \times U(1)$	spin	(B-L)(X)	Relevant Lagrangian terms that induce X decay	ΔB
a	(1, 1, -1)	0	-2	$ u_R e_R ar{X}, \ LL ar{X}$	0
b	(1, 2, 1/2)	0	0	$\bar{H}X, \ \bar{\nu}_R L X, \ \bar{L}e_R X, \ \bar{Q}_L d_R X, \ \bar{u}_R Q_L X, \ X^{\dagger} H^{\dagger} H H$	0
c	(3, 1, -1/3)	0	-2/3	$d_R \nu_R X^{\dagger}, \ u_R e_R X^{\dagger}, \ Q_L L X^{\dagger}, u_R d_R X, \ Q_L Q_L X$	0 or 1
d	$({f 3},{f 1},2/3)$	0	-2/3	$u_R u_R X^\dagger, \; d_R d_R X$	1
e	$({\bf 3},{\bf 2},1/6)$	0	4/3	$\bar{Q}_L \nu_R X, \ \bar{d}_R L X$	0
$\int f$	(1, 2, -1/2)	1/2	-1	$\bar{X}L, \ \bar{\nu}_R XH, \ \bar{X}e_R H$	0

[Heeck, Heisig, Thapa, 2304.09893]

- B-L is always conserved.
- X always has gauge interactions (same as SUSY sparticles).
 - Still not thermalized if m_x is large, X can freeze in/out.
- v_{R} number is broken, X has decays to v_{R} and SM.
 - Hierarchy of rates $X \rightarrow v_R$ and $X \rightarrow SM$ important.
 - $|\varepsilon| \leq \min(\mathsf{B}_{\mathsf{R}},\mathsf{B}_{\mathsf{L}}).$

Dirac leptogenesis models

Case	$SU(3) \times SU(2) \times U(1)$	spin	(B-L)(X)	Relevant Lagrangian terms that induce X decay	ΔB
a	(1, 1, -1)	0	-2	$ u_R e_R \bar{X}, \ LL \bar{X} $	0
b	(1, 2, 1/2)	0	0	$\bar{H}X, \ \bar{\nu}_R L X, \ \bar{L}e_R X, \ \bar{Q}_L d_R X, \ \bar{u}_R Q_L X, \ X^{\dagger} H^{\dagger} H H$	0
c	(3, 1, -1/3)	0	-2/3	$d_R \nu_R X^{\dagger}, \ u_R e_R X^{\dagger}, \ Q_L L X^{\dagger}, u_R d_R X, \ Q_L Q_L X$	0 or 1
d	(3, 1, 2/3)	0	-2/3	$u_R u_R X^\dagger, \; d_R d_R X$	1
e	(3, 2, 1/6)	0	4/3	$ar{Q}_L u_R X, \ ar{d}_R L X$	0
$\int f$	(1, 2, -1/2)	1/2	-1	$\bar{X}L, \ \bar{\nu}_R XH, \ \bar{X}e_R H$	0

[Heeck, Heisig, Thapa, 2304.09893]

- B-L is always conserved.
- X always has gauge interactions (same as SUSY sparticles).
 - Still not thermalized if m_x is large, X can freeze in/out.
- v_{R} number is broken, X has decays to v_{R} and SM.
 - Hierarchy of rates $X \rightarrow v_R$ and $X \rightarrow SM$ important.
 - $|\varepsilon| \leq \min(\mathsf{B}_{\mathsf{R}},\mathsf{B}_{\mathsf{L}}).$

Neutrinogenesis

- Very efficient asymmetry generation!
- Only works due to tiny Dirac neutrino masses.
- X decays into (high-energy) v_{R} : testable ΔN_{eff} !
- More fun with Dirac leptogenesis:

Case	$SU(3) \times SU(2) \times U(1)$	spin	(B-L)(X)	Relevant Lagrangian terms that induce X decay	ΔB
d	(3, 1, 2/3)	0	-2/3	$u_R \nu_R X^{\dagger}, \ d_R d_R X$	1

- Don't even need sphalerons, can generate

 $\Delta \mathsf{B} = (\nu_\mathsf{R} - \bar{\nu}_\mathsf{R}) \neq \mathsf{0}$

directly! Predicts proton decay $p \rightarrow K^+ \bar{\nu}_R!$

[Heeck, Heisig, Thapa, 2304.09893]

Neutrinogenesis is fascinating!

Neutrinogenesis via scattering

- What if the universe never reached $T \sim M_x$?
 - Scattering via off-shell X.
 - CP asymmetry now requires *three* different X couplings.

Case	$SU(3) \times SU(2) \times U(1)$	spin	(B-L)(X)	Relevant Lagrangian terms that induce X decay	ΔB
С	(3, 1, -1/3)	0	-2/3	$d_R \nu_R X^{\dagger}, \ u_R e_R X^{\dagger}, \ Q_L L X^{\dagger}, \ \overline{u_R d_R X}, \ \overline{Q_L Q_L X}$	0 01 1

- No source term for v_R asymmetry: wash in.
- Works well, $T_{reh} < 10^{12} \text{ GeV}$ requires careful study of flavor effects.

[Blažek, **Heeck,** Heisig, Maták, Zaujec 2404.16934]

Summary

- Dirac vs. Majorana is an important question.
- Majorana neutrinos have more parameters and more pheno:
 - 0vββ, collider signatures, lepton flavor violation,...
 - seesaw and leptogenesis are nice (and untestable)!
- Dirac neutrinos *most economic* M₂ solution, and can still
 - explain baryon asymmetry by exploiting v properties;
 - generically expect enhanced N_{eff} from ultra-light v_{R} .
- Fate of lepton number is experimental question!

Dirac neutrinos deserve attention too!

Backup

Julian Heeck - BNL '24

Neutrinoless Quadruple-Beta Decay 0v4β

$$(A,Z)
ightarrow (A,Z+4) + 4 e^-$$
 via $\mathcal{O} = (\overline{
u}_L^c
u_L)^2 / \Lambda^2$:

[Heeck & Rodejohann, 1306.0580]

Candidate Nuclei

- Experimental aspects of $0\nu4\beta$ independent of underlying mechanism.
- Need beta-stable initial state:

• Decay modes: $0\nu 4\beta$ and $2\nu 2\beta$ ($0\nu 2\beta$ forbidden by \mathbb{Z}_4^L).

[Heeck & Rodejohann, 1306.0580]

Candidates for Nuclear $\Delta L = 4$ Processes

	$Q_{0 u4eta}$	Other decays	NA/%
$^{96}_{40}\mathrm{Zr} ightarrow ^{96}_{44}\mathrm{Ru}$	0.629 MeV	$ au_{1/2}^{2 u2eta}\simeq 2 imes 10^{19}$ y	2.8
$^{136}_{54}{\rm Xe} \to {}^{136}_{58}{\rm Ce}$	0.044 MeV	$ au_{1/2}^{2 u2eta}\simeq 2 imes 10^{21}$ y	8.9
$^{150}_{60}\mathrm{Nd}\rightarrow ^{150}_{64}\mathrm{Gd}$	2.079 MeV	$ au_{1/2}^{2 u2eta}\simeq 7 imes 10^{18}$ y	5.6
	$Q_{0 u 4 { m EC}}$		
$^{124}_{54}\mathrm{Xe} \rightarrow {}^{124}_{50}\mathrm{Sn}$	0.577 MeV		0.095
$^{130}_{56}{\rm Ba} \to {}^{130}_{52}{\rm Te}$	0.090 MeV	$ au_{1/2}^{2 u2{ m EC}} \sim 10^{21}$ y	0.106
$^{148}_{64}\mathrm{Gd} \rightarrow ^{148}_{60}\mathrm{Nd}$	1.138 MeV	$ au_{1/2}^lpha \simeq$ 75 y	
$^{154}_{66}\mathrm{Dy} \to {}^{154}_{62}\mathrm{Sm}$	2.063 MeV	$ au_{1/2}^lpha \simeq 3 imes 10^6 \; { m y}$	
	$Q_{0 u3\mathrm{EC}eta^+}$		
$^{148}_{64}\mathrm{Gd} \rightarrow {}^{148}_{60}\mathrm{Nd}$	0.116 MeV	$ au_{1/2}^lpha \simeq$ 75 y	
$^{154}_{66}\mathrm{Dy} \to {}^{154}_{62}\mathrm{Sm}$	1.041 MeV	$ au_{1/2}^lpha \simeq 3 imes 10^6 \; { m y}$	
	$Q_{0 u2\mathrm{EC}2eta^+}$		
$^{154}_{66}\mathrm{Dy} \to {}^{154}_{62}\mathrm{Sm}$	0.019 MeV	$ au_{1/2}^lpha \simeq 3 imes 10^6 \; { m y}$	

Julian Heeck - BNL '24

[Heeck & Rodejohann, 1306.0580]

Best Candidate: Neodymium

Decay channels:

- ${}_{60}^{150}\mathrm{Nd} \rightarrow {}_{62}^{150}\mathrm{Sm}$ via $2\nu 2\beta$ ($\tau_{1/2}^{2\nu 2\beta} \simeq 7 \times 10^{18} \mathrm{y}$): two neutrinos and two electrons are emitted; the electrons have a continuous energy spectrum and total energy $E_{e,1} + E_{e,2} < 3.371 \mathrm{MeV}$.
- ${}^{150}_{60}\mathrm{Nd} \rightarrow {}^{150}_{64}\mathrm{Gd}$ via $0\nu4\beta$. Four electrons with continuous energy spectrum and summed energy $Q_{0\nu4\beta} = 2.079 \,\mathrm{MeV}$ are emitted. In this special case, the daughter nucleus is α -unstable with half-life $\tau^{\alpha}_{1/2}({}^{150}_{64}\mathrm{Gd} \rightarrow {}^{146}_{62}\mathrm{Sm}) \simeq 2 \times 10^6 \,\mathrm{y}.$

Neutrinoless Quadruple-Beta Decay Rate

 $(A,Z)
ightarrow (A,Z+4) + 4 e^-$ via $\mathcal{O} = (\overline{\nu}_L^c \nu_L)^2 / \Lambda^2$:

• Very naive comparison with competing channel $2\nu 2\beta$:

$$\frac{\tau_{1/2}^{0\nu4\beta}}{\tau_{1/2}^{2\nu2\beta}} \simeq \left(\frac{Q_{0\nu2\beta}}{Q_{0\nu4\beta}}\right)^{11} \left(\frac{\Lambda^4}{q^{12}G_F^4}\right) \simeq 10^{46} \, \left(\frac{\Lambda}{\text{TeV}}\right)^4,$$

with $|q| \sim p_{
u} \sim 1\,{
m fm}^{-1} \simeq 100\,{
m MeV}.$

- For $(\overline{\nu}_R^c \nu_R)^2 / \Lambda^2$ additional mass-flip suppression $(m_{\nu}/q)^8$ or right-handed currents...
- Estimated rate in toy model unobservably small. Elaborate models with resonances overcome this?

[Heeck & Rodejohann, 1306.0580; Fonseca & Hirsch, 1804.10545]

Z' of B-L:

B-L with Dirac neutrinos

