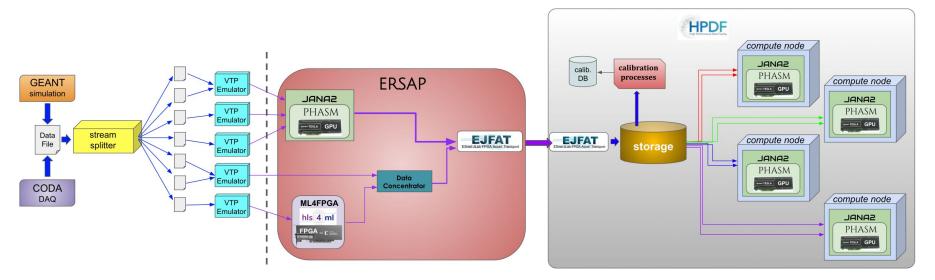


Network Serialization for EDM4eic

Streaming PODIO ROOT files to ElCrecon

David Lawrence


ePIC Reconstruction WG Meeting June 18, 2024

Project funded by JLab LDRD (LD2410)

Simple Example of a Streaming Readout (SRO) System

Highly configurable multi-stream source allows realistic streaming simulations Onsite components will implement first stages of data filtering/reduction

Offsite processing must incorporate built-in calibration latencies and storage. This will also help inform HPDF design

EPJ Web of Conferences **251**, 04005 (2021) https://doi.org/10.1051/epjconf/202125104005

HOSS = Hall-D Online Skim System

HOSS!

- This is responsible for distributing raw data to multiple RAID disks
- DAQ system writes to files in RAM disk.
- Files transferred using RDMA only after file is closed
- Fine time structure naturally introduced wherever buffering is implemented

					H	OSS State	IS	 ○ ○
/gluondaqfs/hdops/CDAQ/dag	_dev_v0.31/dad	q/config/H	OSS/hoss_d	lefault.con	fig -> I	hoss_skim	_gen16.config	view Run Number: 714
					но	OSS serve	rs	
Host	Status	Busy	Tbusy	Tidle	Nprocs	Nerrs	Respawns	Command
gluon112.jlab.org	idle	19.7%	59.2s	240.8s	86	0	0)
gluon113.jlab.org	idle	37.5%	112.4s	187.6s	82	0	0)
gluon114.jlab.org	idle	20.2%	60.5s	239.5s	76	0	0)
gluon115.jlab.org	busy	25.8%	77.3s	222.7s	75	0	0) hdlog hdmk_skims.py -d -ignore_fp=14 /media/ramdisk/rawdata_s
gluon116.jlab.org	busy	26.4%	79.3s	220.7s	77	0	0) hdlog hdmk_skims.py -d -ignore_fp=14 /media/ramdisk/rawdata_s
gluon117.jlab.org	idle	39.5%	118.4s	181.6s	96	7	0)
gluondaqbuff.jlab.org	idle	23.3%	70.0s	230.0s	52	0	0)
gluonraid3-daq	idle	27.3%	82.0s	218.0s	164	0	0)
gluonraid4-daq	idle	28.3%	85.0s	215.0s	157	0	0)
gluonraid5-daq	idle	29.2%	87.6s	212.4s	164	0	0)

					hdrdma	cp servers						
Hos	t	10 Sec. Avg	1 Min. A	vg. 5 Mi	n. Avg.	Nfiles	Receiv	ed Total	Ram Dis	sk Free	Ram Free	Idle
luon110.jlab.org												
luon111.jlab.org												
luon112.jlab.org		0.00G	B/s 0.00)GB/s	0.13GB/s	910		17.515TB	53.8	GB (100.0%)	92.3%	98.6
luon113.jlab.org		0.00G	B/s 0.00)GB/s	0.09GB/s	894		17.530TB	53.8	GB (100.0%)	93.0%	100.0
luon114.jlab.org		0.00G	B/s 0.00)GB/s	0.06GB/s	915		17.570TB	53.8	GB (100.0%)	92.9%	100.0
luon115.jlab.org		0.00G	B/s 0.23	BGB/s	0.07GB/s	892		17.344TB	32.	.0 GB (59.6%)	56.7%	83.2
luon116.jlab.org		0.00G	B/s 0.32	2GB/s	0.13GB/s	896		17.381TB	32.	.0 GB (59.5%)	56.5%	83.2
luon117.jlab.org		0.00G	B/s 0.00)GB/s	0.07GB/s	884		17.149TB	53.8	GB (100.0%)	92.8%	100.0
luon123.jlab.org												
luondaqbuff.jlab	org	0.00G	B/s 0.00)GB/s	0.00GB/s	0		0.000TB	286.	.9 GB (88.4%)	86.3%	92.1
luonraid3-daq		0.00G	B/s 0.00)GB/s	0.20GB/s	12782		35.328TB	216.2	GB (100.0%)	98.0%	70.5
luonraid4-daq		0.00G	B/s 0.32	2GB/s	0.20GB/s	12848		35.099TB	216.2	GB (100.0%)	98.1%	75.8
luonraid5-daq		0.00G	B/s 0.33	BGB/s	0.20GB/s	13119		34.862TB	648.0	GB (100.0%)	101.0%	88.8
gluondaqbuff	gluonraid3	gluonraid4	gluonraid5	gluon100	gluon1	01 glu	on102	gluon103	gluon104	gluon105	gluon106	gluon1
gluon108	gluon109	gluon110	gluon111	gluon112	gluon1	13 glu	on114	gluon115	gluon116	gluon117	gluon120	gluon1
gluon122	gluon123	gluon124	gluon125									
✓ y-autoscale												cl
y datestaic					_	_						
.0 GB/s		-								:	—	
_					-				_	_		
.0 GB/=			_							_		
	_	· .	_					-			9	_ 1
.0 GB/s	-					-						
	_				- L	-				- 6.4		

Streaming Data

Perception

Reality

LDRD2410 milestones

Y1Q1

- M01: Create prototype ERSAP configurations for INDRA and CLAS12 test systems
- M02: Identify or capture SRO formatted data from CLAS12 and INDRA test systems with data tag/filtering capability (output data ready for further offline processing)
- M03: Evaluate existing solutions for configuring and launching remote distributed processes
- M04: Establish code repository(s), project site, and method of documentation

Y1Q2

- M05: Create stream splitter program for EVIO or HIPO data formatted files
- **M06**: Create stream splitter program for simulated data in PODIO for ePIC
- M07: Create VTP emulator using files produced by stream splitter
- **M08**: Create controller program to synchronize multiple VTP emulators

Y1Q3

- **M09**: Determine appropriate schema for all aspects of monitoring system.
- M10: Establish databases for monitoring system using existing JLab servers.
- M11: Integrate Hydra as monitoring component.

Y1Q4

- M12: Integrate off-line data analysis framework into platform for CLAS12 data
- M13: Integrate off-line data analysis framework into platform for ePIC or GlueX simulated data
- M14: Integrate example JANA2 analysis into platform

Y2Q1

- M15: Create configurable CPU proxy component
- M16: Create configurable GPU proxy component (hardware and software)
- M17: Create configurable FPGA proxy component (hardware and software)
- M18: Create functioning hardware GPU component (e.g. CLAS12 L3)
- M19: Create functioning hardware FPGA component (e.g ML4FPGA)

Y2Q2

- M20: Impose artificial time structure on stream sources to mimic beam-like conditions
- M21: Configure simulation of full SRO system using existing JLab hardware resources

Y2Q3

- M22: Establish working test of system that transfers >=100Gbps from CH to compute center
- M23: Establish working test of system that includes GPU component for portion of stream
- M24: Establish working test of system that includes FPGA component for portion of stream
- M25: Test system with remote compute facility (e.g. BNL or NERSC) at limits of available resources

Milestones and Schedule

		Yea			I	Ve	ar2	
		Yea	ar T	_		re	arz	_
	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4
SRO framework config./Platform technology selection								
SRO data available								
Data stream over network								
Monitoring system								
Reconstruction framework integration								
Detector proxy								
Simulation refinement								
Heterogeneous-hardware integration								
Platform Validation								
Performance assessment								

Y2Q4

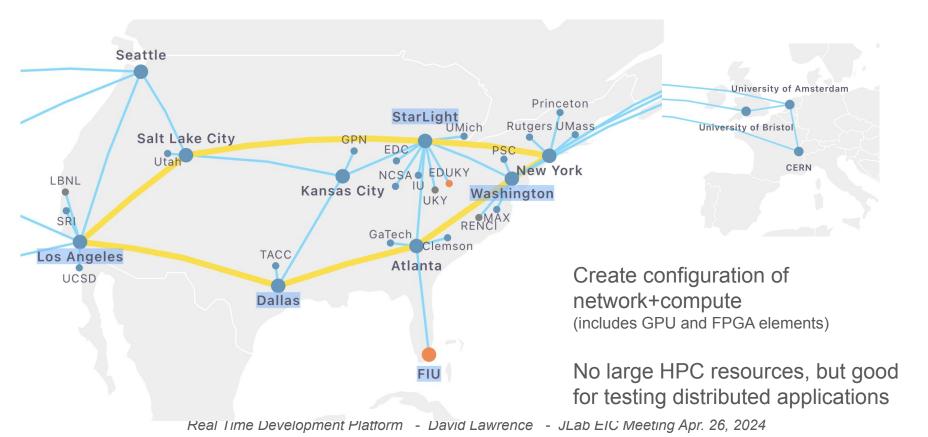
- M26: Configure system that results in stream(s) being received by JLab from external source
- M27: Collaborate with HPDF group to evaluate processing SRO data at JLab for external experiments
- M28: Complete documentation for platform to be used by non-experts

Real Time Devel

PODIO ROOT Streaming

Disclaimer: This is not an efficient way to stream data and will almost certainly **not** be part of the final ePIC standard streaming configuration. It **does** provide a continuous streaming source that can be consumed by the current ePIC reconstruction software allowing other components of the streaming system to be sketched out.

Multiple pieces


- 1. Modified PODIO (allows data to come in form other than ROOT file on disk) Added openTDirectory() to ROOTReader as alternative to openFiles() https://github.com/AIDASoft/podio/issues/565 https://github.com/AIDASoft/podio/pull/579
- 2. podio2tcp utility (read from ROOT file and send data over network) Use zmq PUSH-PULL to do automatic load balancing <u>https://github.com/JeffersonLab/SRO-RTDP/tree/main/src/utilities/cpp/podio2tcp</u>
- 3. podiostream JANA2 event source plugin Reads events from network and provides them to ElCrecon

FABRIC Testbed

https://portal.fabric-testbed.net/

FABRIC test

Tested sending data from CERN to 8 locations in US.

Four ElCrecon processes running at each location

32 consumers total (event processing rate is few seconds per event)

Input file: SIDIS 10x100

/work/eic2/EPIC/EVGEN/SIDIS/pythia6-eic/ 1.0.0/10x100/q2_0to1/pythia_ep_noradcor_ 10x100_q2_0.00000001_1.0_run48.ab.hepmc 3.tree.root 6ad

e37

042

8e5

	Name				EICro	econTCPmulti				FPSCI
se Expiration	(UTC)		2	2024-04	4-15 11	:54:13 +0000				Experimental Physics Software
Lease Start	(UTC)		2	2024-04	1-14 11	:54:14 +0000				Computing Infrastructure
Proj	ect ID	a78186	36-1fa1-	4e77-b	b03-d′	171598b0862				
	State					StableOK				
ID		Name	Cores	RAM	Disk	Image	lmage Type	Host	Site	
es 19bdb4d0- 619a-4abe- 8d98- 135a986b43	serve	r_CERN	4	16	100	docker_rocky_8	qcow2	cern- w1.fabric- testbed.net	CERN	
abc1026b- fc73-4ed7- 9759- 7c29ded40b	worke	er_ATLA	4	16	100	docker_rocky_8	qcow2	atla- w1.fabric- testbed.net	ATLA	
eeb8ae21- e7c7-4cc1- 8940- be0fe9a3ba	worke	er_DALL	4	16	100	docker_rocky_8	qcow2	dall- w1.fabric- testbed.net	DALL	
ac0936ca- b44e-4388- aa58- 4c775234b9	worke	r_KANS	4	16	100	docker_rocky_8	qcow2	kans- w1.fabric- testbed.net	KANS	
710cdd4d- 1c2a-4c6d- 9126- aadf1ecc076	worke	r_LOSA	4	16	100	docker_rocky_8	qcow2	losa- w2.fabric- testbed.net	LOSA	
1b3e6ea2- 1f39-467e- 9bf9- 756356a0f7	worker	_NEWY	4	16	100	docker_rocky_8	qcow2	newy- w1.fabric- testbed.net	NEWY	
709bf2f5- e684-4671- 816e- 2b50c94751	worke	er_SALT	4	16	100	docker_rocky_8	qcow2	salt- w2.fabric- testbed.net	SALT	
915fef-a6ee- 466e-9917- 53a158b6e8	worke	er_SEAT	4	16	100	docker_rocky_8	qcow2	seat- w2.fabric- testbed.net	SEAT	
99cf0a22- 0da4-4c9b- a6b3-	worker	WASH	4	16	100	docker_rocky_8	qcow2	wash- w1.fabric- testbed.net	WASH	

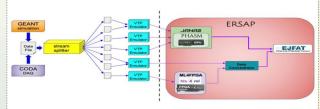
Summary and Outlook

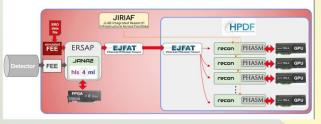
- The RTDP (Real Time Development Platform) project seeks to create a software tool for developing and testing streaming readout (SRO) systems
- Components will be configured and connected to emulate systems, allowing for real components to be modularly swapped with emulators
- Code developed and tested for sending PODIO (EDM4eic) over the network to ElCrecon. (PR still pending)
- Additional streaming configurations being developed that will serve as test cases for RTDP development. LDRD project completion scheduled for Sept. 2026

Backup Slides

RTDP: Streaming Readout Real-Time Development and Testing Platform

Authors: Ayan Roy, David Lawrence, Jeng-Yuan Tsai, Marco Battaglieri, Markus Diefenthaler, Vardan Gyuriyan, Xinxin (Cissie) Mei


MOTIVATION


Experimental Nuclear Physics is moving towards a Streaming Readout (SRO) paradigm Complex pipelines integrating heterogeneous hardware and varied software may have interference effects

Simulation and testing of complex SRO systems is needed to assist in their design and validation Testing of complete, integrated SRO systems at scale for future experiments requires new tooling

APPLICATION

- SRO Experiments requiring intricate configurations can be defined with user-friendly YAML
- Individual components such as calibration or data transport can be represented by software simulation modules
- Full simulation can include mixture of real and simulated components
- Scale from fully simulated on single PC to full use of hardware in distributed system

GOAL

- Create a platform to seamlessly process data from SRO to analysis on compute centers in various configurations
- Fully developed software platform that is capable of monitoring the components in a fully developed streaming system.
- Tools for fully simulating a real-time SRO data processing network from Front End Electronics to large compute.

ACKNOWLEDGEMENT

This project is funded through the Thomas Jefferson National Accelerator Facility LDRD program. This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics under contract DE-AC05-060R23177.

PROGRESS

RTDP is at the early stages of development. Here are some out of many things we have worked on:

- Captured CLAS12 data, streamed across the Jlab campus using a 100Gbps high-speed NIC featuring hardware timestamps.
- Captured data using synchronized streams from multiple network sources.

· Integrate Hydra as monitoring component.

OBJECTIVE

- Deployment of a distributed (quasi) real-time SRO data processing model includes data calibration and full traditional off-line reconstruction.
- Framework optimization using GEANT-generated and archived beam-on data.
- Optimized framework validation with beam-on tests.
 Assessment of needed network and computing resources.
- Assessment of the performance for different hardware platforms.
- Identify potential issues relevant to a future HPDF in receiving and processing SRO data.

MEASURE OF SUCCESS

Specific milestones and objectives of the project include:

- Ability to launch synchronized processes across multiple nodes
- Integrated monitoring of all components in the system
- Ability to configure and simulate an experiment similar in size to the planned <u>SoLD</u> experiment at <u>JLab</u>
- Test with 400Gbps transfer speed, at least one FPGA and at least 1 GPU component

FUTURE WORKS

- Create stream splitter program for EVIO or HIPO data formatted files
- Create stream splitter program for simulated data in PODIO for ePIC
- Create VTP emulator using files produced by stream splitter

Real Time Development Platform - David Lawrence - JLab EIC Meeting Apr. 26, 2024

RTDP poster from ACAT2024

Deployment of a

FPSC

Experimental Physics Software and

Computing InFrastructure

LDRD2410 milestones

Y1Q1

- M01: Create prototype ERSAP configurations for INDRA and CLAS12 test systems
- **M02**: Identify or capture SRO formatted data from CLAS12 and INDRA test systems with data tag/filtering capability (output data ready for further offline processing)
- M03: Evaluate existing solutions for configuring and launching remote distributed processes
- M04: Establish code repository(s), project site, and method of documentation

Y1Q2

- M05: Create stream splitter program for EVIO or HIPO data formatted files
- **M06**: Create stream splitter program for simulated data in PODIO for ePIC
- M07: Create VTP emulator using files produced by stream splitter
- M08: Create controller program to synchronize multiple VTP emulators

Y1Q3

- **M09**: Determine appropriate schema for all aspects of monitoring system.
- M10: Establish databases for monitoring system using existing JLab servers.
- M11: Integrate Hydra as monitoring component.

Y1Q4

- M12: Integrate off-line data analysis framework into platform for CLAS12 data
- M13: Integrate off-line data analysis framework into platform for ePIC or GlueX simulated data
- M14: Integrate example JANA2 analysis into platform

Y2Q1

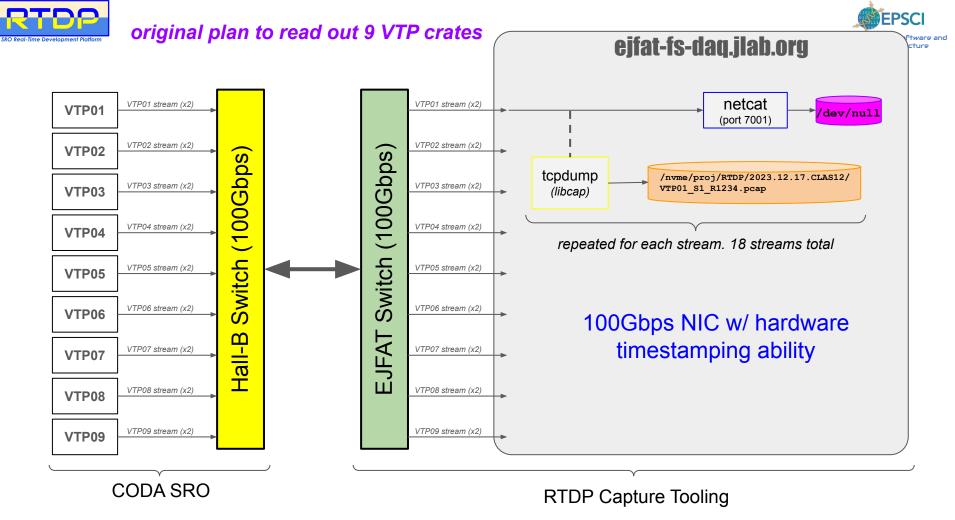
- M15: Create configurable CPU proxy component
- M16: Create configurable GPU proxy component (hardware and software)
- M17: Create configurable FPGA proxy component (hardware and software)
- M18: Create functioning hardware GPU component (e.g. CLAS12 L3)
- M19: Create functioning hardware FPGA component (e.g ML4FPGA)

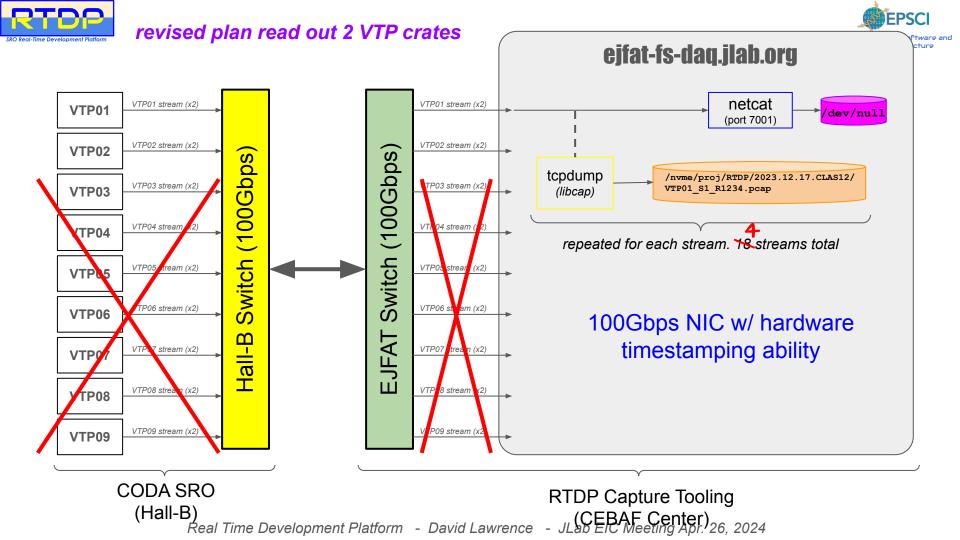
Y2Q2

- M20: Impose artificial time structure on stream sources to mimic beam-like conditions
- M21: Configure simulation of full SRO system using existing JLab hardware resources

Y2Q3

- M22: Establish working test of system that transfers >=100Gbps from CH to compute center
- M23: Establish working test of system that includes GPU component for portion of stream
- M24: Establish working test of system that includes FPGA component for portion of stream
- M25: Test system with remote compute facility (e.g. BNL or NERSC) at limits of available resources


Milestones and Schedule

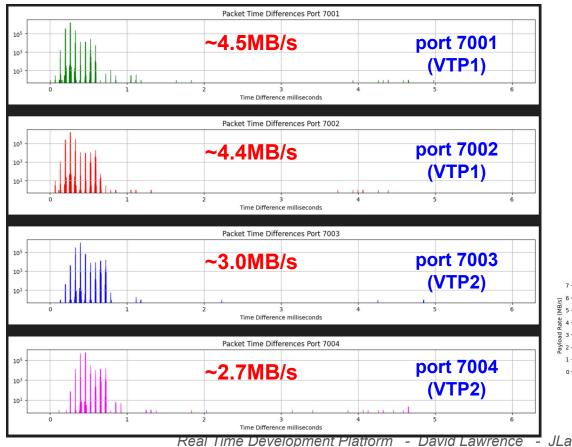

		Yea	ar 1		Year2				
	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	
SRO framework config./Platform technology selection									
SRO data available									
Data stream over network									
Monitoring system									
Reconstruction framework integration									
Detector proxy									
Simulation refinement									
Heterogeneous-hardware integration									
Platform Validation									
Performance assessment									

Y2Q4

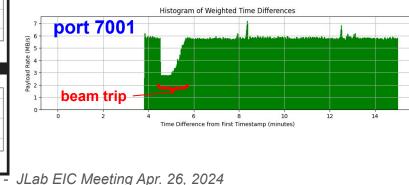
- M26: Configure system that results in stream(s) being received by JLab from external source
- M27: Collaborate with HPDF group to evaluate processing SRO data at JLab for external experiments
- M28: Complete documentation for platform to be used by non-experts

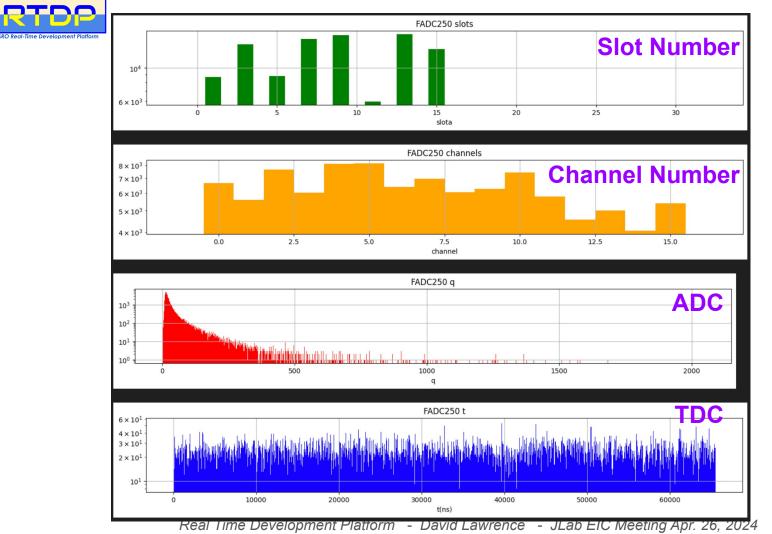
Real Time Devel

Run	Start time	Beam Current	filename	File Size
176	2023-12-17 8:40:49	90nA	CLAS12_ECAL_PCAL_S2_2023-12-17_08-37-33.pcap	11GB
177	2023-12-17 8:54:25	10nA	CLAS12_ECAL_PCAL_S2_2023-12-17_08-51-31.pcap	6.4GB
178	2023-12-17 9:12:23	100nA	CLAS12_ECAL_PCAL_S2_2023-12-17_09-08-04.pcap	16.2GB
179	2023-12-17 9:32:13	50nA	CLAS12_ECAL_PCAL_S2_2023-12-17_09-29-15.pcap	9.5GB
180	2023-12-17 9:48:41	150nA	CLAS12_ECAL_PCAL_S2_2023-12-17_09-44-43.pcap	14.1GB
181	2023-12-17 10:03:07	75nA	CLAS12_ECAL_PCAL_S2_2023-12-17_10-00-51.pcap	12.0GB
182	2023-12-17 10:20:42	25nA	CLAS12_ECAL_PCAL_S2_2023-12-17_10-18-11.pcap	7.2GB


Copied to tape: /mss/epsci/RTDP/2023.12.17.CLAS12

Time difference between packets by port


100nA

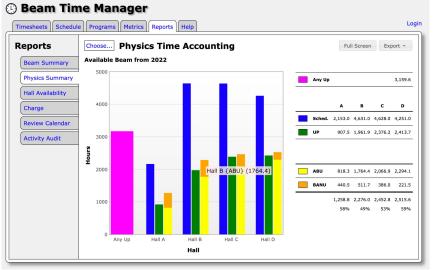


Standard 1.5kB MTU used for TCP packets

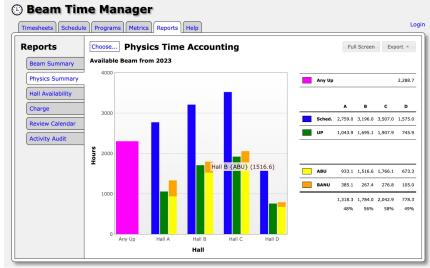
Packets w/ time structure metadata captured into industry standard .pcap files

Crates report every 64µs, even if no hits present for that crate

TDC timing is relative to frame start time



SRO Benefit to Future Experiments



Hall-B has ~1640 ABU/year 10% increase in recorded beam -> additional 164 hours/year \$10k/hr * 164 = \$1.64M/year *n.b. not accounting for multi-hall operation*

1764 hours in CY22

1517 hours in CY23

