CniPol Meeting

June 5, 2024

The model utilized to determine the target polarization at HJET

A.A. Poblaguev

Brookhaven National Laboratory

Outlook

- The method used to determine the jet target polarization is reviewed.
- The main question behind the consideration: is the polarization value $P_{\rm jet}=0.958\pm0.001$, evaluated in 2004 is still valid?

The Square Root Formula

If unpolarized proton beam is scattered off a vertically polarized target and recoil protons are detected in left/right symmetric detectors, the spin asymmetry can be calculated as

$$a = \frac{N_R^+ - N_L^+}{N_R^+ + N_L^+} = A_N P$$

The spin flip, allows us to eliminate the systematic errors due to possible acceptance asymmetry ϵ .

$$\begin{split} N_R^+ &= N_0 (1+a)(1+\lambda)(1+\epsilon) \\ N_R^- &= N_0 (1-a)(1-\lambda)(1+\epsilon) \\ N_L^+ &= N_0 (1-a)(1+\lambda)(1-\epsilon) \\ N_L^- &= N_0 (1+a)(1-\lambda)(1-\epsilon) \end{split}$$

The systematic error free solution if $P_+=P_-$, $A_{
m N}^{(R)}=A_{
m N}^{(L)}$, and $\epsilon_+=\epsilon_-$

$$a = \frac{\sqrt{N_R^+ N_L^-} - \sqrt{N_L^+ N_R^-}}{\sqrt{N_R^+ N_L^-} + \sqrt{N_L^+ N_R^-}}$$

and similar for λ and ϵ

If
$$P_{\pm} = P \pm \delta P \ (a_{\pm} = a \pm \delta a)$$
:

$$N_{R}^{+} = N_{0}(1 + a + \delta a)(1 + \lambda)(1 + \epsilon)$$

$$N_{R}^{-} = N_{0}(1 - a + \delta a)(1 - \lambda)(1 + \epsilon)$$

$$N_{L}^{+} = N_{0}(1 - a - \delta a)(1 + \lambda)(1 - \epsilon)$$

$$N_{L}^{-} = N_{0}(1 + a - \delta a)(1 - \lambda)(1 - \epsilon)$$

$$a_{\mathrm{calc}} \approx a = A_{\mathrm{N}}P$$
 $\epsilon_{\mathrm{calc}} \approx \epsilon + \delta a = \epsilon + A_{\mathrm{N}}\delta P$
 $\lambda_{\mathrm{calc}} \approx \lambda$

For the recoil spectrometer, only average value of the jet target spin up and down polarizations, $P = (|P_+| + |P_-|)/2$, is essential.

Hyperfine states of the atomic hydrogen

The hyperfine (discriminating by electron $\uparrow \downarrow$ and proton \pm spins) states of the S-wave ground states of hydrogen atom:

$$\psi_{1} = |\uparrow +\rangle$$

$$\psi_{2} = \cos \theta |\uparrow -\rangle + \sin \theta |\downarrow +\rangle$$

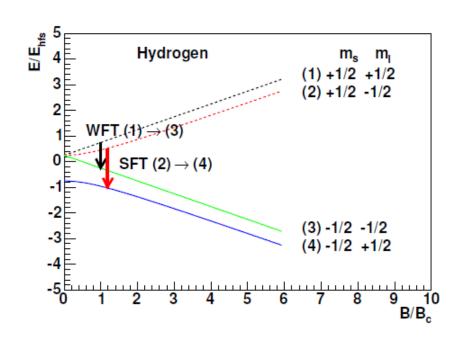
$$\psi_{3} = |\downarrow -\rangle$$

$$\psi_{4} = \cos \theta |\downarrow +\rangle - \sin \theta |\uparrow -\rangle$$

$$an 2\theta = B_c/B$$

 $B_c = 50.7 \text{ mT}$
 $B = 120 \text{ mT}$ (the holding field)

$$\cos 2\theta = \frac{B_{hold}}{\sqrt{B_{hold}^2 + B_c^2}} = 0.921$$



The hyperfine states flow

Dissociator $n_1\psi_1+n_2\psi_2+n_3\psi_3+n_4\psi_4$

Separating magnet $n_1\psi_1+n_2\psi_2$

RF transitions:

```
\begin{array}{lll} \text{SFT=ON} & \text{WFT=OFF} & n_1 \epsilon_{1 \rightarrow 3} \psi_1 + n_2 \psi_2 + n_1 (1 - \epsilon_{1 \rightarrow 3}) \psi_3 & \Rightarrow P_- \\ \text{SFT=OFF} & \text{WFT=ON} & n_1 \psi_1 + n_2 \epsilon_{2 \rightarrow 4} \psi_2 + n_2 (1 - \epsilon_{2 \rightarrow 4}) \psi_4 & \Rightarrow P_+ \\ \text{SFT=ON} & \text{WFT=ON} & n_1 \epsilon_{1 \rightarrow 3} \psi_1 + n_2 \epsilon_{2 \rightarrow 4} \psi_2 + n_1 (1 - \epsilon_{1 \rightarrow 3}) \psi_3 + n_2 (1 - \epsilon_{2 \rightarrow 4}) \psi_4 & \Rightarrow P_0 \\ \text{SFT=OFF} & \text{WFT=OFF} & n_1 \psi_1 + n_2 \psi_2 \end{array}
```

Separating Magnet (BRP)

```
\begin{array}{lll} \mathsf{SFT}\text{=}\mathsf{ON} & \mathsf{WFT}\text{=}\mathsf{OFF} & n_1\epsilon_{1\to3}\psi_1+n_2\psi_2 & \Rightarrow m_- \\ \mathsf{SFT}\text{=}\mathsf{OFF} & \mathsf{WFT}\text{=}\mathsf{ON} & n_1\psi_1+n_2\epsilon_{2\to4}\psi_2 & \Rightarrow m_+ \\ \mathsf{SFT}\text{=}\mathsf{ON} & \mathsf{WFT}\text{=}\mathsf{ON} & n_1\epsilon_{1\to3}\psi_1+n_2\epsilon_{2\to4}\psi_2 & \Rightarrow m_0 \\ \mathsf{SFT}\text{=}\mathsf{OFF} & \mathsf{WFT}\text{=}\mathsf{OFF} & n_1\psi_1+n_2\psi_2 & & \Rightarrow m_0 \end{array}
```

 $\epsilon_{1\to3}$ and $\epsilon_{2\to4}$ are inefficiencies of the RF transitions $P_{-,+,0}$ are jet polarizations in the scattering chamber $m_{-,+,0}$ are counts in the Breit-Rabi polarimeter

The Jet Polarization

$$-P_-=rac{n_1+n_2\,\cos2 heta-2n_1\epsilon_{1 o 3}}{n_1+n_2}pprox 96\%$$
 The (fixed) typos in Hiromi's thesis are highlighted.
$$P_+=rac{n_1+n_2\cos2 heta-2n_2\cos2 heta\epsilon_{2 o 4}}{n_1+n_2}pprox 96\%$$

$$-P_0=rac{n_1-n_2\cos2 heta-2n_1\epsilon_{1 o 3}+2n_2\cos2 heta\epsilon_{2 o 4}}{n_1+n_2}pprox 4\%$$

The BRP counts

$$m_{-} = n_{1}\epsilon_{1\to 3} + n_{2}$$
 $m_{+} = n_{1} + n_{2}\epsilon_{2\to 4}$
 $\epsilon_{1\to 3} = \frac{m_{-}/(m_{+}-m_{0})-n_{2}/n_{1}}{1+m_{-}/(m_{+}-m_{0})}$
 $\epsilon_{2\to 4} = \frac{m_{+}/(m_{-}-m_{0})-n_{1}/n_{2}}{1+m_{+}/(m_{-}-m_{0})}$

It is hardcoded in **HjetPolManager**: $\cos 2\theta = 0.92$, $n_2/n_1 = 1.00239$

Simplified expression for the jet target polarization

$$P_{\rm jet} = \frac{|P_+| + |P_-|}{2} = 1 - \frac{n_2}{n_1 + n_2} \times \left[1 - \cos 2\theta + \epsilon_{1 \to 3} + \epsilon_{2 \to 4} \cos 2\theta\right]$$

$$= \frac{1 + \cos 2\theta}{2} - \frac{m_0}{m_+ + m_-} + \mathcal{O}(0.01\%)$$
(defined by the holding field magnet)
$$\sim 0.3\%$$
(measured by the Breit-Rabi polarimeter)

- The HJET Breit-Rabi polarimeter does not measure the jet target polarization.
- It only monitors average RF transition inefficiency (which is small)
- Evaluation of $m_0 = m_0^{\rm ON} m_0^{\rm OFF} \approx 305 300$ is the dominant (the only) source of the systematic uncertainty in value of the inefficiency.

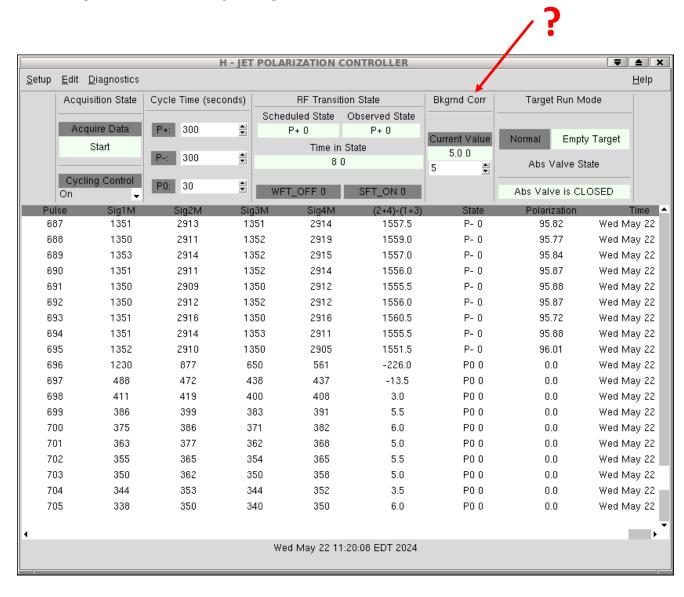
jetPolDisplay

$$\epsilon = 5.3/(1555 \times 2)$$

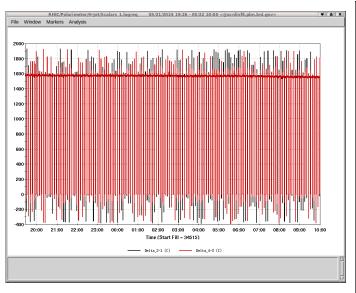
= 0.17%,

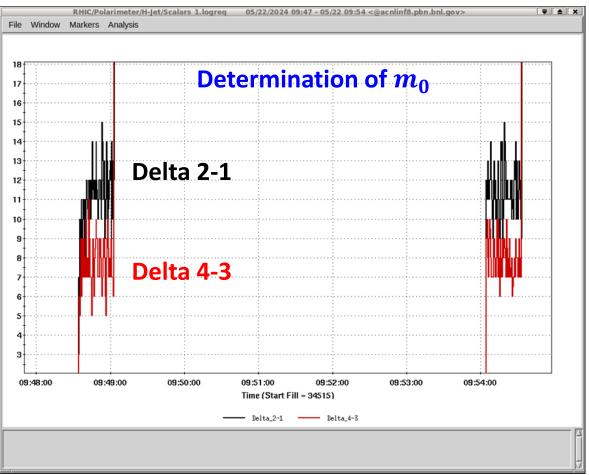
but what actually is Bkrnd. Corr (5.0), which have reduced ϵ by $\epsilon \rightarrow \epsilon - 0.15\%$?

Value of ϵ , with or without Bkrnd. Corr., is in good agreement with that determined 20 years ago.



LogView





- Brnd. Corr. are not applied in LogView
- Is the discrepancy between Delta_2-1 and Delta_4-3 due to a drawback in the chopper design?
- If so, the systematic error (Bgrnd.Corr.) of about 5 is not unreasonable.

Could systematic errors in value of m_0 be improved?

Is second RF available?

$$m_0 = n_1 \epsilon_{1 \to 3} + n_2 \epsilon_{2 \to 4}$$

$$m'_0 = n_1 \epsilon_{1 \to 3} \epsilon_{1 \to 3}^{(2)} + n_2 \epsilon_{2 \to 4} \epsilon_{2 \to 4}^{(2)} \approx 0$$

Polar.	RF transitions		Second RF		BRP
	SFT	WFT	SFT	WFT	
P_+	OFF	ON	OFF	OFF	m_+
P_0	ON	ON	OFF	OFF	m_0
P_{-}	ON	OFF	OFF	OFF	m_+
P_0	ON	ON	ON	ON	$m_0'=0$

$$P_{\rm jet} = 0.961 - \frac{m_0 - m_0'}{m_+ + m_-}$$

To verify the method, we should compare

$$(m_0 - m_0')_{2-1} = (m_0 - m_0')_{4-3}$$

Magnetic Field

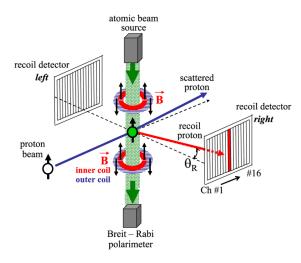


FIG. 1 (color online). Layout of the pp elastic scattering setup with an example of parallel proton spins, $p^{\dagger}p^{\dagger} \rightarrow pp$. The target protons cross the RHIC beam from above.

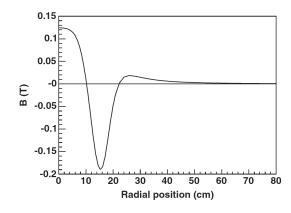


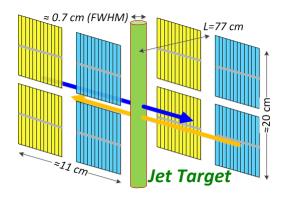
FIG. 3. The H-jet target holding magnetic field calculated by the OPERA program with the experimental setting: inner coil 349 A (N = 56); outer coil 275 A (N = 40). The recoil proton detectors sit at \sim 78 cm from the H-jet target center.

$$P_{\text{jet}}^{\text{MF}} = \frac{1}{2} \left(1 + \frac{B}{\sqrt{B^2 + B_c^2}} \right)$$

$$\Delta B = 20 \text{ G} \implies \Delta P/P = 0.1\%$$

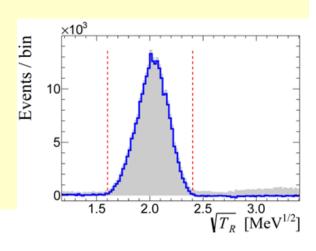
To keep the jet polarization within $\pm 0.1\%$, (long term) stability of the magnetic field should be $\pm 2\%$

Indirect control for the magnetic field stability

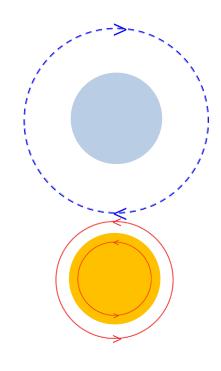


$$z_R = z_{\text{jet}} + L \sqrt{\frac{T_R}{2m_p} \frac{E_{\text{beam}} + m_p}{E_{\text{beam}} - m_p + T_R}} \pm \frac{b_{\text{MF}}}{\sqrt{T_R}}$$

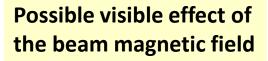
- The magnetic field tracking correction factor $b_{\mathrm{MF}} = \frac{qL}{c} \times \int_0^L \left(1 \frac{r}{L}\right) \frac{B(r)dr}{\sqrt{2m_p}}$ has different signs for left and right detectors
- The currents in the Helmholtz coils were adjusted to eliminate $b_{
 m MF}$
- Nevertheless, $b_{\rm MF} \approx 0.7 \ {\rm mm \ MeV^{1/2}}$,
- b_{MF} effectively alter $\langle T_R \rangle$ in a Si strip (depending o the strip location)
- No variations of $b_{\rm MF}$ has been detected. However, for numerical estimates more detailed analysis should be done.



The beam magnetic field



Since $\langle B_{\nu} \rangle = 0$, this magnetic field should not affect the P_{jet} .



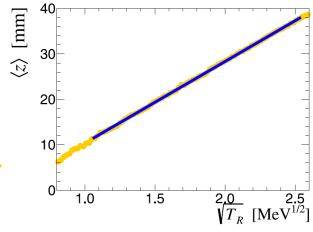


Fig. 12. The average (all HJET detectors) jet center coordinate $\langle z_0 \rangle$ dependence on the recoil proton energy T_R . The solid line indicates the result of linear fit in the 1.1 –6.5 **MeV** energy range.

- The b_{MF} corrections should cancel due to left/right average.
- Extrapolating to $\sqrt{T_R} \rightarrow 0$, one can find the gap between blue and yellow detectors.
- The unexplained result was 17 mm instead of 18 mm measured by a ruler.
- Since $B_y(-x) = -B_y(x)$, the beam magnetic field can **potentially** explain the puzzle.

Summary

- I did not find sufficient reasons to concern about the value of the jet target polarization, $\frac{P_{\text{jet}}=0.958\pm0.001}{P_{\text{jet}}=0.957\pm0.001}$ and its stability.
- Nevertheless,
 - Better understanding of the systematics in determination of m_0 is needed. In particular, the value of Bgrnd. Corr. should be understood.
 - New measurements of the holding magnet field are needed.
 - What is the efficiency of the beam separation?
 - Effect of the bunch frequency was not considered.