AC-LGAD sensor irradiation test
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® Irradiation at IJS

® 1 MeV neutrons
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e Received devices

e Started testing Strips
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Irradiated strips IV

* All devices were annealed 80min at 60C to avoid rapid change in sensor behavior (similar to months at
room temperature), this was standard during testing of HGTD sensors

° Compliance is 100uA in these tests

HPK W5 IV Comparison
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e After 8Omin the sensors behavior would change slovvly if not stable

HPK W2 IV Comparison
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® Testing done at room temperature with probe station, current is higher for high irradiation devices and
will require cold testing (need to set up the probe station)
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W5 irradiated strips CV

® CV on the N+ connector (full sensor), 10 KHz is usually OK for irradiated sensors

HPK W5 DC Comparison at 10 kHz
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Bias voltage [V]
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e Will test with laser to see if gain is proportional to it
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* Reduction of ‘foot’ as expected, but some strange behavior

HPK W5 DC Comparison at 10 kHz
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W2 irradiated strips CV

HPK W2 DC Comparison at 10 kHz
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® CV on the N+ connector (full sensor), 10 KHz is usually OK for irradiated sensors
® Reduction of ‘foot’ as expected, for 1E15Neq quite some gain left

HPK W2 DC Comparison at 10 kHz
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Conclusions

e Recelved sensors from Triga reactor (neutrons)
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® First [IV/CV tests on strip sensors
® Next: laser TCT tests to check homogeneity of response

R (cm)
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® Then test pixel sensors as well

_. Dual-radiator RICH

Hadron Directign
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Backup
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Radiation damage model

e Radiation damage for LGADs can be parameterized

® Ny(®) = Gerrd + Ny (¢p=0)e ¢
® Acceptor creation: g, ffgb

® By creation of deep traps

* Initial acceptor removal mechanism: Ny(¢p=0)e —c

e Reduction of doping concentration in the multiplication layer

- reduction of gain

e (C-factor (acceptor removal constant) depending on

detector type

fluence
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NOTE: this does NOT follow NIEL scaling well for
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Radiation creates interstitial defects that
inactivate the Boron: Si i+ B s=» Si s +B i
B_i might interact with Oxigen, creating @
donor state

6/11/2024

/




s

® Acceptor removal ratio cp/ ch

° Dependence on the proton energy seems to be
sensor specific

® Does not scale with NIEL, larger than NIEL factor.
Damage can be > 2 than the expected NIEL fluence

® Need to take into account the energy
distribution of the damaging particles in the
fluence calculation

® Some new results:
https://indico.cern.ch/event/ 1334364/ contributions/ 5672075/
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NIEL violation (old-ish data)
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https://indico.cern.ch/event/1334364/contributions/5672075/

Another issue: SEB

® Single Event Burnout can happen for highly

irradiated devices

e A single highly ionizing particle under-

depletes the device and causes a catastrophic 6
breakdown B .2
® Device is non recoverable afterwards -:i._“ - ¢ ”’
® Thinner sensors seem to have a higher fatal E | >+ 3 §‘ .
Electric field T N . g ...... :2
® See hitps://indico.cern.ch/event/ 1334364/ contributions/5672087/ H [ @ Survival Efield *
® (Should not be an issue for ePIC) Yo 10 2 a0 s e

Sensor nominal thickness [pm]
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The gain layer will have more or less the same

behavior of standard LGAD devices

The N+ can have some unexpected effects though

® Normally is highly doped and conductive so it’s not
affected by radiation damage

® We don’t know well the effects of acceptor removal to
N-type, might even be higher than in P-type

In AC-LGADs the N+ has low doping to have high

resistivity necessary for charge sharing

® (Cannot be too low or depletion will reach the oxide
and cause premature breakdown

® Could be affected even by low irradiation
If the N doping drops it could Change the
resistivity and the behavior of the sensors

® Plus, it could lead to premature breakdown due to low
doping in the N+
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Effect of irradiation on AC-LGADs
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Effect of irradiation on AC-LGADs

e The change in N+ resistivity can affect the charge sharing profile around the strip/pad

® If the irradiation is not homogeneous (especially in the end-cap) it could change the centroid of the charge
sharing between pads/strips and skew the reconstruction algorithm

® This could be corrected with a correction per fluence/position, but would need a very precise model!

o Affects position resolution and might also influence time resolution since the delays are calculated per position

Charge sharing profile \\ //
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Radiation damage at ePIC

* RAW
Barrel average: 5.4e+09 | max: 5.9+10 | min: 3.4+09
End-cap average: 1.3e+10 | max: 1.6e+11 | min: 5.1e+09
FF average: 3.9e+10 | max: 1.8e+11 | min: 3.3+09

Z (cm)

* NEQ — (not correct for LGADs gain layer) o VEQ
Barrel average: 3.6e+09 | max: 1.3e+11 | min: 1.1+09
End-cap average: 1.2e+10 | max: 8.4e+10 | min: 3.2e+09
FF average: 4.5e+10 | max: 4.2e+11 | min: 2.7e+09
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® Safe to assume MAX damage is <le+12, almost negligible
for LGADs gain layer (effects start at >1e+13)
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