AC-LGAD sensor irradiation test

Dr. Simone M. Mazza (SCIPP, UC Santa Cruz)

Dr. Simone M. Mazza - University of California Santa Cruz

10/12/2018

Irradiations planned

- Irradiation at IJS
 - 1 MeV neutrons
- Fluences

- 1E12, 1E13, 1E14 Neq
- Plus higher fluence for general interest of irradiation on AC-LGADs
 - 5E14, 1E15 Neq
- Received devices
 - Started testing Strips

SCIPP HPK ID	Geometry	wafer	size	doping	(pF/mm2)	thickness	lenght (mm)	pitch (um)	width (um)	Tested laser	Test IV	Ack for more? \$	Fluence (J8I)
IPK1	Strip	W02		E	24	50	1	5 50	5	0 X	x		1.00E+1
IPK3	Strip	1005		E	600	0 50		5 50	0 5	o x	к		1.00E+1
IPK4	Strip	W08		C	600	50	1	5 50	0 5	0 X	х		1
IPK5	Strip	W09		E	600	20		5 50	0 5	0			
IPK6	Strip	W11		C	600	20		5 50	5	0			
IPK7	Ship	W02		E	241	50	1	5 50	0 10	0			5.00E+
4PKB	Strip	W04		C	24	0 50	1	5 50	0 10	0 X	x		t
IPK9	Strip	W05		E	600	0 50	1	5 50	0 10	0			1.00E+
HPK10	Strip	NADE		C	600	50	1	5 50	10	0			
HPK11	Strip	W09		E	600	20	1	5 50	0 10	0			
IPK12	Strip	W11		C	600	20	1	5 50	10	0	-		
IDM 45	Chin	18870		-	20						2		1005
IPK (A	Strip	1002		C.	24					0			i i.uue+
101/14	amp .	1404		6	24	50	1	50	5	0			1.000
1-110	Burp	WUD		E	60	50	1	50	9 9				1.00E+
PK16	Strip	W08		C	600	50	10	50	5	0 Nalu board #1	-		-
IPK17	Strip	W09		E	600	20	1	50	5	0			
PK18	Strip	W11		C	600	20	1	50	0 5	0	1		
							_						
IPK19	Ship	W02		E	241	0 50	1	0 50	0 10	0			1.00E+
PK20	Ship	W04		C	24	50	1	50	0 10	0			
IPK21	Strip	W05		E	600	0 50	0 10	0 50	0 10	0 X	x		1 1.00E+
IPK22	Strip	WOB		C	600	50	1	50	10	0 X	x		1
IPK23	Strip	W09		E	600	20	1	50	10	0		-	
IPK24	Ship	W11		C	600	20	10	50	10	0			
APK/25	Shin	1002		E	241	1 51	1 74	50		n			5 00E+
HPK26	Strip	W04		C	24	50	2	50	0 5	0			
IPK27	Strip	W05		E	60	9 50	2	50	0 9	o x	x		1.00E+
IPK28	Strip	W08		C	600	50	2	50	0 5	οx	×		1
HPK29	Shin	1000		F	60	20	2	50	n 5	n x	×.		1
HEKGO	Strip	W11		C	601	21	2	50	n 5	0			
				-									
IPK31	Ship	W02		E	24	50	2	50	0 10	0			1.00E+
IPK32	Strip	W04		C	24	0 50	2	50	0 10	0			
IPK33	Strip	W05		E	600	0 50	2	50	D 10	0			1.00E+
IPK34	Strip	BOW		C	600	50	2	50	10	0			
IPK35	Strip	W09		E	600	20	2	50	10	o x	х	1	1
IPK36	Strip	W11		C	600	20	2	50	10	0			
	-	-			-	-				-	-		
EK37	Pixel	1402	4.44	=	24	in in	100						1012 1012 10
IPK38	Pixel	W04	414	C	24	5	10	0 50					1E12 1E13 1E
IPIC39	Fivel	WOS	ave	E	50		1 10	1 50	1				5E14 1E15
IPK40	Pixel	WEE	der f	C	60		45	-					1612 4642 46
IDK/11	Pixel	1400	dert	-	60.	190	150	50					4E42 4E43 4E
iPK 42	Pivol	WH4	dant.		60.		150	50					5E14 1E16, 1E
IT THE	PIAM	wit	4304	U	60	21	19	50					JEIN, IEID
and an	Therei	10.000		-			-	-		-			
IT NAS	Pixel	1002	4304	-	24	50	30	50					DETA, IETO
IP KAA	Pixel	WUA INCA	434		24	SI SI	30	50					0E14, 1E15
177,40	PING	WU5	4,84	E	600	50	30	50					1E12, 1E13, 1E
P%45	Pixel	80W	4364	C	600	50	300	50	B				
PR47	Phone	W09	414	E	600	20	300	50					s 1e12, 5e14, 1e1
PK48	Pixel	W11	4.64	C	600	20	30	50					

Irradiated strips IV

- All devices were annealed 80min at 60C to avoid rapid change in sensor behavior (similar to months at room temperature), this was standard during testing of HGTD sensors
 - After 80min the sensors behavior would change slowly if not stable
- Testing done at room temperature with probe station, current is higher for high irradiation devices and will require cold testing (need to set up the probe station)

• Compliance is 100uA in these tests

W5 irradiated strips CV

- CV on the N+ connector (full sensor), 10 KHz is usually OK for irradiated sensors
- Reduction of 'foot' as expected, but some strange behavior
 - Will test with laser to see if gain is proportional to it

W2 irradiated strips CV

- CV on the N+ connector (full sensor), 10 KHz is usually OK for irradiated sensors
- Reduction of 'foot' as expected, for 1E15Neq quite some gain left

Conclusions

• Received sensors from Triga reactor (neutrons)

- First IV/CV tests on strip sensors
- Next: laser TCT tests to check homogeneity of response
- Then test pixel sensors as well

Backup

7

Dr. Simone M. Mazza - University of California Santa Cruz

10/12/2018

Radiation damage model

- Radiation damage for LGADs can be parameterized
 - $N_A(\phi) = g_{eff}\phi + N_A(\phi=0)e^{-c\phi}$
- Acceptor creation: $g_{eff}\phi$
 - By creation of deep traps
- Initial acceptor removal mechanism: $N_A(\phi=0)e^{-c\phi}$
 - Reduction of doping concentration in the multiplication layer \rightarrow reduction of gain
 - C-factor (acceptor removal constant) depending on detector type
- NOTE: this does NOT follow NIEL scaling well for fluence

Boron

Radiation creates interstitial defects that inactivate the Boron: Si_i + B_s → Si_s + B_i B_i might interact with Oxigen, creating a donor state

NIEL violation (old-ish data)

- Acceptor removal ratio cp/cn
 - Dependence on the proton energy seems to be sensor specific
 - Does not scale with NIEL, larger than NIEL factor.
 Damage can be > 2 than the expected NIEL fluence
- Need to take into account the energy distribution of the damaging particles in the fluence calculation
- Some new results:

https://indico.cern.ch/event/1334364/contributions/5672075/

Proton Energy [MeV]

10/12/2018

Another issue: SEB

- Single Event Burnout can happen for highly irradiated devices
- A single highly ionizing particle underdepletes the device and causes a catastrophic breakdown
 - Device is non recoverable afterwards
- Thinner sensors seem to have a higher fatal Electric field
- See https://indico.cern.ch/event/1334364/contributions/5672087/
- (Should not be an issue for ePIC)

Effect of irradiation on AC-LGADs

- The gain layer will have more or less the same behavior of standard LGAD devices
- The N+ can have some unexpected effects though
 - Normally is highly doped and conductive so it's not affected by radiation damage
 - We don't know well the effects of acceptor removal to N-type, might even be higher than in P-type
- In AC-LGADs the N+ has low doping to have high resistivity necessary for charge sharing
 - Cannot be too low or depletion will reach the oxide and cause premature breakdown
 - Could be affected even by low irradiation
- If the N doping drops it could change the resistivity and the behavior of the sensors
 - Plus, it could lead to premature breakdown due to low doping in the N+

Effect of irradiation on AC-LGADs

- The change in N+ resistivity can affect the charge sharing profile around the strip/pad
- If the irradiation is not homogeneous (especially in the end-cap) it could change the centroid of the charge sharing between pads/strips and skew the reconstruction algorithm
- This could be corrected with a correction per fluence/position, but would need a very precise model!
 - Affects position resolution and might also influence time resolution since the delays are calculated per position

Radiation damage at ePIC

• RAW

13

Barrel average: 5.4e+09 | max: 5.9+10 | min: 3.4+09 End-cap average: 1.3e+10 | max: 1.6e+11 | min: 5.1e+09 FF average: 3.9e+10 | max: 1.8e+11 | min: 3.3+09

- NEQ (not correct for LGADs gain layer) Barrel average: 3.6e+09 | max: 1.3e+11 | min: 1.1+09 End-cap average: 1.2e+10 | max: 8.4e+10 | min: 3.2e+09 FF average: 4.5e+10 | max: 4.2e+11 | min: 2.7e+09
- Safe to assume MAX damage is <1e+12, almost negligible for LGADs gain layer (effects start at >1e+13)

