Muon Telescope Detector and Quarkonia

Rongrong Ma (BNL)
07/08/2024
Lecture for NuSTEAM Program

Question 1

HW: given that the time signals for a particle hitting a strip of length L are t_{1} and t_{2}, and the signal travel velocity in the strip is v, what is the time and position of the hit?

> Assuming the particle hits the strip at position x and time t :
> $t_{1}=t+x / v$
> $t_{2}=t+(L-x) / v$
> $t=\left(t_{1}+t_{2}-L / v\right) / 2$
> $x=\left(t_{1}-t_{2}\right) v / 2+L / 2$

Question 2

HW: what is the interaction length? Why is important for MTD analysis?

> Nuclear interaction length is the mean free path of a particle between two inelastic scatterings with material. The smaller the interaction length, the more inelastic scatterings the incident particle undergoes, and more likely to be stopped.
> MTD analysis relies on the absorber to stop background particles other than muons, and therefore thicker material is preferred.

Question 3

> HW: what is fraction of runs excluded with 4σ cut due to statistical fluctuations?

> Random variable of large statistics follows Gaussian distribution. Fraction of a Gaussian distribution outside of 4σ range due to fluctuation is 0.006%.

Question 4

HW: how to calculate the invariant mass from decay muons' momenta?

The four-momenta of the two decayed muons are:
$p_{1}=\left(E_{1}, p_{x 1}, p_{y 1}, p_{z 1}\right), p_{2}=\left(E_{2}, p_{x 2}, p_{y 2}, p_{z z}\right)$
$p=p_{1}+p_{2}$
$m^{2}=p^{2}=\left(p_{1}+p_{2}\right)^{2}$
$=\left(p_{1}\right)^{2}+\left(p_{2}\right)^{2}+2 p_{1} p_{2}$
$=2 m_{\mu}{ }^{2}+2\left[E_{1} E_{2}-\left(p_{x 1} p_{x 2}+p_{y 1} p_{y 2}+p_{z 1} p_{z 2}\right)\right]$
$E_{1}{ }^{2}=m_{\mu}{ }^{2}+p_{x l}{ }^{2}+p_{y I}{ }^{2}+p_{z I}{ }^{2}$
$E_{2}{ }^{2}=m_{\mu}{ }^{2}+p_{x 2}{ }^{2}+p_{y 2}{ }^{2}+p_{z 2}{ }^{2}$

