
July 18th 2024

Machine Learning for Neutrino 
Identification
Nitish Nayak 
NuSTEAM Workshop

1



Prerequisites 
• Types of Neutrino Interactions -  CC ,  CC,  CC,  NC


• LArTPC detectors


• What neutrino interactions look like


• Why would we want to identify different types? 

νe νμ ντ νx

Outline
• Curve fitting/Classification/Regression


• Gentle introduction to Neural Networks


• Predicting type of neutrino interactions in LArTPCs


• Hands-on demo
2



Types of -Interactionsν

• Different interactions look characteristically different


• Hadronic output (coming from the nucleus) broadly similar


• Interactions mainly differ in the nature of the final-state lepton


• Presence or absence of detected lepton tells us about type of interaction

, e, , τ ν

µ-

p, π±, … N

νµ

W

µ-, e-

p, π±, … N

νµ, e

W
νx

p, π±, … N

νx

Z

Charged Current
Neutral Current

3



Identifying Neutrinos
• Fundamental objective of any neutrino oscillation experiment


• Neutrinos change flavor, tagging flavor is crucial to understand what’s happening


• We have an idea of how many  ,  we start off with from beam, identify and count how many there at FD => measure probabilityνμ νe

4



• Broadly track-like or shower-like


• LArTPCs give us exquisite detail


• But mistakes can easily be made!  

-Interactions in LArTPCsν

5



Issues to deal with
• Neutrino interactions are messy at our energies!


• A decision flow can be something like this : 


• If you identify a  (usually a long, straight track) => 


• If you identify an  (shower like) => 


• If you don’t see either => 


• But : 


• Sometimes don’t see two ’s from  (one is short and buried in the other), can be confused as 


•  are often long and straight too, can be confused as 


• Other messy stuff


• We need automated tools to tell them apart! Can’t sift through each one manually..

μ νμCC

e νeCC

NC

γ π0 e

π± μ

6



Curve Fitting

7



• Teasing out relationships between observables


• Data is usually always noisy


• Often have to make assumptions about what its supposed to 
look like : linear, quadratic, something fancy etc. 


• Not always easy to justify! 

Parametric Fitting
• 


• Eg : , where 


• Choose  based on some measure denoting how good/bad the fit is (“loss 
function”)


• Eg :  (“least square distance”)


• Overfitting : 


• Can be caused by having too many parameters (d.o.f) describing low-
dimensional data


• Fits well to given noisy data but doesn’t generalize! 

y = f( ⃗x , ⃗θ )

y = ax2 + bx + c ⃗θ ≡ (a, b, c)
⃗θ

⃗θ : min | ̂y − f( ⃗x , ⃗θ ) |2

https://xkcd.com/2048/

8



• But how to choose parametric form? Need to carefully assess which one works for given problem under what assumptions


• No reason to believe a parametric form even exists in some cases (esp in higher dimensions)


• Eg : Predict how movies are going to perform based on various inputs (choice of actors, marketing budget, script etc)


• Sophisticated techniques that are automatically able to “learn” what’s best. Can be very accurate


• More complexity  automatically better! Still prone to overfitting, biases, bad assumptions etc/⟹

https://xkcd.com/1725/

9



Regression vs Classification
• Regression - Predict a continuous variable, for eg. the energy of the neutrino that interacted in the detector


• Parametric methods : Find  : Choice of  can be pre-determined or automatically “learnt”


• Complex problems require complex  , often very non-linear


• Classification - Predict one of many possible discrete labels, for eg.  CC ,  CC,  CC,  NC


• Classification is also curve-fitting in a way!  

⃗θ : min | ̂y − f( ⃗x , ⃗θ ) |2 f

f

νe νμ ντ νx

• Now, we want  and  that best discriminates 
between data coming from different labels 


• “Decision boundary”


• Essentially a regression problem for the probability 
of given data to belong to one label or the other


• Again,   can be relatively simple or highly 
complicated depending on context


• Involves another loss-function that minimizes 
“probability error”, can be least-squares as before

f ⃗θ

f

10



Neural Networks

11



• Essentially devices that can spit out arbitrarily complex 
functions in many dimensions


• Network of “neurons” to mimic structure of human brain


• Consider for eg, input 28x28 (=784 pixels) image where each 
pixel has a number b/w (0, 1) denoting how bright that pixel is


• The neurons (1 for each pixel) in the first (“input”) layer can 
just be “brightness” values in that pixel

• For a neuron in the 2nd layer, calculate its response as : 


•  =  


• Where  represents the value of the  neuron in the  layer


•  represents the strength of the connection between  and  
(“weights”)


•  is a bias parameter


•  is a so-called activation function, designed to ensure values in each 
neuron are within a certain range, for eg between (0, 1) typically for 
classification

a(1)
0 σ(w0,0a(0)

0 + w0,1a(0)
1 + w0,2a(0)

2 + . . . w0,na0
n + b0)

a(0)
i ith 0th

w0,i a(1)
0 a(0)

i

b0

σ

12



• In our eg, the final (“output”) layer has 10 neurons


• 1 for each digit we want to predict (0-9) 


• Lets assume 2 hidden layers, each with 16 
neurons and image w/ 784 pixels

• => (784*16 + 16*16 + 16*10) = 12960  parameters 
(“weights”)


• => (16 + 16 + 10) = 42  parameters (“biases”)


• Total = 13002 parameters


• Find  and  values such that we get the best 
predictions


• Curve fitting in 13002 dimensions! 

w

b

w b

13



Training
• Process of finding best  and  values referred to as “training the network”


• What do we mean by “best”? 


• For some  and , each neuron in output layer contains value between (0, 1)


• A probability measure denoting how confident the network is about the input image corresponding to that label


• Can define loss function exactly as before (“least-squares”) as


•  and minimize this 

w b

w b

L(w, b) =
9

∑
i=0

( ̂yi − oi(w, b))2

14



Why so complex? 
• Our brains can easily recognize patterns/digits even if the images were a bit fuzzy


• But its a hard problem. We need ~13000 parameters to be able to describe arbitrary decision boundary shapes


• Could imagine the neural network decision flow as : 


• 2nd layer of neurons detect edges of image where pixels are bright


• 3rd layer of neurons combines these edge pixels in various shapes, for eg loops or lines


• Final layer might try to correlate number of loops or lines to the actual digits, for eg, 2 loops 0 lines => label “8” etc


• As we feed in more data during the training phase to optimize the loss function, network can get better and better at figuring out 
these patterns

+ =

15



Gradient Descent
• Algorithm to minimize loss-function,  and find best , 


•  has 13,002 input parameters but outputs a single number


• To find minimum, use Gradient descent — “ball rolling down a hill”


• Non-convex optimization : not guaranteed to find global minimum


• Try starting the ball at different starting points. Also “stochastic GD” — try to make ball jump across valleys 

L(w, b) w b

L(w, b)

16



What’s the takeaway
• Forced to deal with complexity 


• Large dimensionality, unknown parametric relationships


• Overfitting : network starts to predict based on spurious 
features it learns from training data


• For eg, dependence on handwriting style — “bias”


• But its hard to know what it learns ~Black box


• Don’t assess network performance on training dataset


• Always keep a fraction of data separate and then see how 
trained network performs (“Test dataset”)


• If training errors are very different from test errors, we may 
have issues


• Also good practices, shuffling dataset before training, cross-
validation, i.e change up training and test data for different 
iterations


• Playing around with GD parameters etc

https://xkcd.com/1838/

17



Neutrino Flavor Tagging

18



• Classification problem


• We use “deep neural networks”, particularly a brand called convolutional neural networks


• Trained on ~6 million total events across  CC ,  CC,  CC,  NC


• ~22 million parameters (>> 13000!), “softmax” activation function to squish neurons to b/w (0, 1)


• Trained for a week using Nvidia GPU clusters. Actually, most modern GPUs can handle these kinds of payloads but sometimes need 
more than 1


• Three input images, each 500 x 500 = 250,000 pixels


• Output is a score b/w (0, 1) for each of 4 flavor labels :  CC ,  CC,  CC,  NC. Also has scores for other features of interaction

νe νμ ντ νx

νe νμ ντ νx

19



Why Deep?
• Previously, traditional approaches involve using set of human-engineered features as input, even to a shallower 

neural network


• Examples of useful features for our problem : number of showers, gap from vertex, number of tracks


• Deep neural networks are able to figure these out themselves and also able to catch features we may have missed


• We get more accurate networks, but possibly at the cost of not knowing as much about what its doing. 


• Validation is key to building trust!

20



• Extracted features end up looking a bit like this


• Pretty abstract, hard to interpret


• Training process is actually done over multiple iterations


• Works something like this : 


• Split dataset into 90% “training”, 10% “test”. Don’t touch test 
dataset until after all the training is done


• For each iteration (“epoch”), further split “training” into 80% 
actual training, 10% validation dataset after shuffling randomly


• Evaluate loss function in each iteration for different images


• Tune ,  using Gradient Descent


• Once all the 80% dataset is exhausted, evaluate result on 
validation dataset (“accuracy”, “loss”)


• Now re-shuffle the 90% again into a different training and 
validation set and start all over again

w b

21



• Dashed is on training dataset, solid is on validation dataset


• For now, we stop training when things stop improving after a few epochs/iterations


• Notice also that it flatlines — this is a good sign that there’s no overfitting! 


• If we’re confident the training went well, we can then look at the test dataset

Doesn’t look 
like this! 

22



Lets test things out!

• As a demo, we will test out the CNN network used in 
[https://journals.aps.org/prd/abstract/10.1103/
PhysRevD.102.092003]


• We can do all this on the browser itself, hopefully 
without having to install anything


• Go to https://colab.research.google.com/


• In the pop-up, go to the GitHub tab and type in url : 
https://github.com/nitish-nayak/dune-cvn w/ the 
“nusteam” branch


• You should see two .ipynb files (Python notebooks)


• Select “dune_cvn.ipynb”

23

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.102.092003
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.102.092003
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.102.092003
https://colab.research.google.com/
https://github.com/nitish-nayak/dune-cvn


Further Reading/Homework
• Borrowed heavily from 3Blue1Brown’s excellent neural network explainer :


• https://www.3blue1brown.com/topics/neural-networks


• Youtube playlist : https://www.youtube.com/watch?v=aircAruvnKk&list=PLZHQObOWTQDNU6R1_67000Dx_ZCJB-3pi


• Other references : 


• https://towardsdatascience.com/a-visual-introduction-to-neural-networks-68586b0b733b


• https://towardsdatascience.com/artificial-neural-networks-for-total-beginners-d8cd07abaae4


• https://towardsdatascience.com/conv-nets-for-dummies-a-bottom-up-approach-c1b754fb14d6


• https://www.youtube.com/watch?v=YRhxdVk_sIs


• Build and train your own CNN : 


• https://github.com/josephlee94/intuitive-deep-learning/blob/master/Part%202:%20Image%20Recognition%20CIFAR-10/
Coding%20Companion%20to%20Intuitive%20Deep%20Learning%20Part%202%20(Annotated).ipynb


• https://medium.com/intuitive-deep-learning/build-your-first-convolutional-neural-network-to-recognize-
images-84b9c78fe0ce

24

https://www.3blue1brown.com/topics/neural-networks
https://www.youtube.com/watch?v=aircAruvnKk&list=PLZHQObOWTQDNU6R1_67000Dx_ZCJB-3pi
https://towardsdatascience.com/a-visual-introduction-to-neural-networks-68586b0b733b
https://towardsdatascience.com/artificial-neural-networks-for-total-beginners-d8cd07abaae4
https://towardsdatascience.com/conv-nets-for-dummies-a-bottom-up-approach-c1b754fb14d6
https://github.com/josephlee94/intuitive-deep-learning/blob/master/Part%202:%20Image%20Recognition%20CIFAR-10/Coding%20Companion%20to%20Intuitive%20Deep%20Learning%20Part%202%20(Annotated).ipynb
https://github.com/josephlee94/intuitive-deep-learning/blob/master/Part%202:%20Image%20Recognition%20CIFAR-10/Coding%20Companion%20to%20Intuitive%20Deep%20Learning%20Part%202%20(Annotated).ipynb
https://medium.com/intuitive-deep-learning/build-your-first-convolutional-neural-network-to-recognize-images-84b9c78fe0ce
https://medium.com/intuitive-deep-learning/build-your-first-convolutional-neural-network-to-recognize-images-84b9c78fe0ce

