My journey at STAR Lijuan Ruan (BNL) Email: ruan@bnl.gov

Brookhaven[®] National Laboratory

Over 754 collaborators from 75 institutions from 15 countries

@BrookhavenLab

RHIC @ Brookhaven National Laboratory

24 years of RHIC operation

The mission of RHIC

To probe the inner workings of the Quark-Gluon Plasma

To map the phase diagram of QCD

To study the spin puzzle of proton

Relativistic heavy ion collision

Physics Goals at RHIC

Identify and study the properties of matter with partonic degrees of freedom.

Penetrating probes

- "jets" and heavy flavor

Bulk probes

- $v_2 \rightarrow$ partonic collectivity
- spectra at low p_T, particle ratios.

Elliptic flow v₂

Non-central collisions: azimuthal anisotropy in coordinate-space Interactions

asymmetry in momentum-space Sensitive to early time in the system's evolution

Measurement: Fourier expansion of the azimuthal p_T distribution

$$E\frac{d^{3}N}{d^{3}p} = \frac{1}{\pi}d^{2}\frac{N}{dp_{T}^{2}dy}\left[1 + 2v_{1}\cos(\varphi - \Psi_{R}) + 2v_{2}(2[\varphi - \Psi_{R}]) + ...\right] \implies v_{2} = \langle \cos(2[\varphi - \Psi_{R}]) + ...]$$

Low p_T: bulk property

STAR: Nucl. Phys. A 757 (2005) 102

 γ_s approach 1 in central Au+Au collisions: thermalization within the framework of this model.

High p_T: penetrating probe

STAR: Nucl. Phys. A 757 (2005) 102

In central Au+Au collisions at RHIC: Fragmentation (q/g \rightarrow hadrons) + energy loss at p_T > 6 GeV/c:

Significant suppression of inclusive charged hadron observed at $p_T>6$ GeV/c: $dN_a/dy\sim1000$. M. Gyulassy et al., nucl-th/0302077.

Intermediate p_T: baryon/meson pattern

At $p_T \sim 2$ GeV/c, pbar/ π ratio ~ 1 . \rightarrow It can not be factorized jet fragmentation.

At 2<p_T<6 GeV/c, p, Λ increase faster than π , K_S, K from peripheral to central collisions. STAR: Phys. Rev. Lett. 92 (2004) 052302; PHENIX: Phys. Rev. Lett. 91 (2003) 172301; V. Greco, et al., Phys. Rev. Lett. 90, 202302 (2003).

Recombination/Coalescence at hadronization

If phase space is filled with partons, recombine/coalesce them into hadrons. At $2 < p_T < 6$ GeV/c, baryon enhancement, v₂ number of constituent quark scaling.

Perfect Liquid discovery

In 2005, BNL announced a discovery of perfect liquid at RHIC https://www.bnl.gov/newsroom/news.php?a=110303

The STAR Detector

<u>Solenoidal Tracker at RHIC (1200 tons)</u> Time Projection Chamber

- 1. Second largest device of its kind ever built
- 2. 3D camera to take photos of the collisions
- 3. Measure ionization energy loss (dE/dx) and momentum

¹⁹⁷Au + ¹⁹⁷Au Collisions at RHIC

Particle identification

Pion/kaon identification less than 1 GeV/c, proton identification less than 1.5 GeV/c

A need to extend particle identification

Need new experimental tool to extend particle identification to higher momentum and separate electrons from hadrons

MRPC TOFr 2003

Multigap Resistive Plate Chamber (MRPC) Technology low cost, high timing resolution <100 × 10⁻¹² second

A prototype tray (TOFr) was installed in 2002-2003

Structure of MRPC Module

Particle identification from TOFr

STAR Collaboration, PLB616(2005)8

Curve:
$$\frac{1}{\beta} = \sqrt{\frac{m^2}{p^2} + 1}$$

Electron identification

STAR Collaboration, PRL94(2005)062301

Time of Flight Detector upgrade

US-China Collaboration, 120 units in total: 2008: 4%; 2009: 72%; 2010: 100%

Beautiful particle identification at STAR

Lijuan Ruan, BNL

The electron-positron tomography

The Time of Flight Detector completes the experimental tool for electron-positron (dielectron) tomography.

Thermal dileptons

Sun emission spectrum: Photon energy a few electron volts.

Quark-Gluon Plasma emission spectrum: photon energy a few 10⁹ electron volts

Hottest matter in the universe: a few trillion degree Celsius!

My journey continues

We would like to use heavy flavor particles to probe medium properties.

Muon Telescope Detector

Muon Telescope Detector – MRPC technology

Measuring quarkonia, bound states composed of a heavy quark and anti-heavy quark held together by gluons

Sequential Upsilon suppression

 $\Upsilon(1S) R_{AA} = 0.40 \pm 0.03 \text{ (stat.)} \pm 0.03 \text{ (sys.)} \pm 0.07 \text{ (norm.)}$

 Υ (2S) R_{AA} = 0.26 ± 0.07 (stat.) ± 0.02 (sys.) ± 0.04 (norm.)

 $\Upsilon(3S)$ R_{AA} upper limit: 0.20 at a 95% confidence level

Sequential Y suppression at RHIC

The mission of RHIC

To probe the inner workings of the Quark-Gluon Plasma

To map the phase diagram of QCD

To study the spin puzzle of proton

STAR detector at Beam Energy Scan Phase II (BES-II)

inner TPC upgrade Major improvements for Endcap TOF **BES-II** Event Plane Detector EPD Upgrade: Improves trigger Reduces background Allows a better and independent reaction plane measurement critical to **BES** physics iTPC Upgrade: Replaced inner sectors of the TPC Continuous Coverage • Improves dE/dx EndCap TOF Upgrade: • Extends n coverage Rapidity coverage is critical from 1.0 to 1.5 • PID at $\eta = 1$ to 1.5 • Lowers p_T cut from 125 • Improves the fixed target MeV/c to 60 MeV/c program Provided by CBM-FAIR

Detector performance

Beam Energy Scan II in 2019-2021

LEReC: First-ever electron cooling with bunched beams Test case for electron cooling at EIC

LEReC: low energy RHIC electron cooling

STAR as a fixed-target experiment

A gold target was installed inside the beam pipe in 2014

BES-II datasets

A broad μ_B coverage: 20 < μ_B < 720 MeV

BES-II data collected at RHIC will cover a broad and interesting range of μ_B for the critical point search

STAR forward upgrades for 2022-2025

To probe the inner workings of the Quark-Gluon Plasma To study the spin puzzle of proton, to bridge RHIC physics and EIC science

Enormous efforts to make forward upgrades on schedule during pandemic Successfully commissioned and collected data for Runs 2022 and 2023

STAR forward upgrades

FCS

FST

sTGC

It is an amazing journey

Evolution of the STAR Detector

major upgrades over the last twenty years to improve particle identification and vertex reconstruction, and is still evolving with an extension to forward rapidity as of today. pioneered in using new technologies: MRPC, MAPS, GEM and siPM.

Estimate 35M(initial) +75M(upgrades)\$.

Detector	primary functions	DOE+(in-kind)	year
TPC+Trigger	$ \eta < 1$ Tracking		1999-
Barrel EMC	$ \eta < 1$ jets/ $\gamma/\pi^0/e$		2004-
FTPC	forward tracking	(Germany)	2002-2012
L3	Online Display	(Germany)	2000-2012
SVT/SSD	V0/charm	(France)	2004-2007
PMD	forward photons	(India)	2003-2011
EEMC	$1 < \eta < 2$ jets/ π^0/e	(NSF)	2005-
Roman Pots	diffractive		2009-
TOF	PID	(China)	2009-
FMS/Preshower	$2.5 < \eta < 4.2$	(Russia)	2008-2017
DAQ1000	x10 DAQ rate		2008-
HLT	Online Tracking	(China/Germany)	2012-
FGT	$1 < \eta < 2 W^{\pm}$		2012-2013
GMT	TPC calibration		2012-
HFT/SSD	open charm	(France/UIC)	2014-2016
MTD	muon ID	(China/India)	2014-
EPD	event plane	(China)	2018-
RHICf	$\eta > 5 \pi^0$	(Japan)	2017
iTPC	$ \eta < 1.5$ Tracking	(China)	2019-
eTOF	$-2 < \eta < -1$ PID	(Germany/China)	2019-
FCS	2.5< η <4 calorimeter	(NSF)	2021-
FTS	2.5< η <4 Tracking	(NCKU/SDU)	2021-

Zhangbu Xu, STAR Collaboration meeting, September 2020

STAR is a discovery machine

RHIC Scientists Serve Up "Perfect" Liquid https://www.bnl.gov/newsroom/news.php?a=110303

Exotic Antimatter Detected at Relativistic Heavy Ion Collider https://www.bnl.gov/newsroom/news.php?a=111075

RHIC Physicists Nab New Record for Heaviest Antimatter https://www.bnl.gov/newsroom/news.php?a=111259

Physicists Measure Force that Makes Antimatter Stick Together https://www.bnl.gov/newsroom/news.php?a=111786

'Perfect Liquid' Quark-Gluon Plasma is the Most Vortical Fluid https://www.bnl.gov/newsroom/news.php?a=112068

'Strange' Glimpse into Neutron Stars and Symmetry Violation https://www.bnl.gov/newsroom/news.php?a=116983

Collisions of Light Produce Matter/Antimatter from Pure Energy https://www.bnl.gov/newsroom/news.php?a=119023

Picture credit: BNL news article https://www.bnl.gov /newsroom/news.ph p?a=121192

The journey continues with both existing and future data sets

Workforce

People are essential to accomplishing the goals in all areas of physics described in the Long Range Plan.

Programs such as the NSF REU and DOE SULI are essential to attracting talented students to nuclear science.

Central to our proposals is the necessity to reduce barriers to participation in nuclear science.

Our community is committed to establishing and maintaining an environment where all feel welcome and are treated with respect and dignity.

The training our students receive is very valuable in industry, national labs, and in critical areas of national need, such as nuclear nonproliferation and security

