Far-Forward Detectors @ the EIC

Accessing Exclusive Reactions at the EIC

The EIC detector(s)

- Two interaction regions (IRs) for possible detector locations.
- Only one IR (IP6) part of the project scope
$>$ ePIC detector based around a 1.7T solenoid magnet. $>$ Contains subdetectors for tracking, PID, and calorimetry.
ePI数 and the full interaction region!

EIC Detector 1 - IP6

- In addition to the central detector \rightarrow detectors integrated into the beamline on both the hadron-going (far-forward) and electron-going (far-backward) direction.
- Requires special considerations for the machine-detector interface.

The far-forward system functions almost like an independent spectrometer experiment at the EIC!

We will focus on the detector setup for IP6, but I will discuss what we gain with IP8 at the end.

The epl(k) Far-Forward Detectors

B1apf

The epl(i) Far-Forward Detectors

The epit Far-Forward Detectors

The epid Far-Forward Detectors

Far-Forward Processes at the EIC

Far-Forward Processes at the EIC

$>$ Physics channels require tagging of charged hadrons (protons, pions) or neutral particles (neutrons, photons) at very-forward rapidities ($\eta>4.5$).
$>$ Different final states require tailored detector subsystems.

Far-Forward Processes at the EIC

$>$ Physics channels require tagging of charged hadrons (protons, pions) or neutral particles (neutrons, photons) at very-forward rapidities ($\eta>4.5$).
$>$ Different final states require tailored detector subsystems.
$>$ Various collision systems (e.g. e+p, e+d, e+Au) provide unique challenges.
$>$ Placing of far-forward detectors uniquely challenging due to presence of machine components, space constraint, apertures, etc.

Far-Forward Processes at the EIC

$>$ Physics channels require tagging of charged hadrons (protons, pions) or neutral particles (neutrons, photons) at very-forward rapidities ($\eta>4.5$).
$>$ Different final states require tailored detector subsystems.
$>$ Various collision systems (e.g. e+p, e+d, e+Au) provide unique challenges.
$>$ Placing of far-forward detectors uniquely challenging due to presence of machine components, space constraint, apertures, etc.
$>$ Full engineering design underway, and detector R\&D wrapping up toward construction of first test articles.

Some general comments about simulations

- Detector simulations carried out using GEANT (GEometry ANd Tracking) a well-developed code package used to simulate particle interactions with matter.

Some general comments about simulations

- Once particle + matter simulations are complete, need to be converted to useful form \rightarrow digitization.
- Digitization takes the information the GEANT produces, and turns it into a

Cartoon of proton passing through silicon plane, and depositing a bit of energy.
 mimicked signal in your simulated detector.

Some general comments about simulations

- Reconstruction is taking the digitized information and turning it into a physical quantity (e.g. energy, momentum, etc.).

Far-Forward Detector Subsystems

B0 Detectors

B0 Detectors

Charged particle reconstruction and photon tagging.
> Precise tracking ($\sim 10 u m$ spatial resolution).
> Fast timing for background rejection and to remove crab smearing (~ 35 ps).
$>$ Photon detection (tagging or full reco).

This is the opening where the detector planes will be inserted

Preliminary Parameters:
$229.5 \mathrm{~cm} \times 121.1 \mathrm{~cm} \times 195 \mathrm{~cm}$ (Actual length will be shorter)

B0 Detectors in CAD

B0 Tracking and EMCAL Detectors

CAD Look credit: Jonathan Smith
> Tracker uses a new silicon technology - ACLGADs.
> Allows for high-precision spatial and timing measurement!
$>$ EMCAL uses either PbWO4 crystals or LYSO.
$>$ Tagging photons important in differentiating between coherent and incoherent heavy-nuclear scattering, and for reconstructing $\pi^{0} \rightarrow \gamma \gamma$.
> Space is a major concern here Installation of large detector into accelerator magnet highly non-trivial!

B0 Integration

- Pump in front of detector package - only

13 cm of space between pump and detector.

- Not currently in DD4HEP geometry another source of secondaries (impact to be evaluated).

Ron Lassiter

- Tracking planes separate into two pieces - top and bottom - for insertion into bore.
- Need concept for EMCAL.

B0-detectors

PbWO_{4} EMCAL (behind tracker)五
$>$ High-precisions tracking detectors required for charged particle reconstruction.
$>$ Tagging photons important in differentiating between coherent and incoherent heavy-nuclear scattering, and for reconstructing $\pi^{0} \rightarrow \gamma \gamma$.

DD4HEP Simulation

Roman Pots

- Place roman pottery into the particle accelerator \rightarrow learn the deep mysteries of the universe?

Roman Pots

Roman pots at STAR - used to measure $p+p$ elastic scattering.

Roman Pots

Beam pipe

- Roman Pots are silicon sensors placed in a "pot", which is then injected into the beam pipe, tens of meters or more from the interaction point (IP).
- Momentum reconstruction carried out using matrix transport of protons through magnetic lattice.

Roman Pots @ the EIC

Protons
$\mathrm{E}=275 \mathrm{GeV}$
$0<\boldsymbol{\theta}<5 \mathrm{mrad}$

Full GEANT4 simulation.

Roman "Pots" @ the EIC

- Two stations, separated by 2 meters, each with two layers (minimum) of silicon detectors.
- Silicon detectors placed directly into machine vacuum!
- Allows maximal geometric coverage!
- Need space for detector insertion tooling and support structure.

Roman "Pots" @ the EIC
25.6 cm

$\sigma(z)$ is the Gaussian width of the beam, $\beta(z)$ is the RMS transverse beam size.
ε is the beam emittance.

$$
\sigma(z)=\sqrt{\varepsilon \cdot \beta(z)}
$$

Low-pT cutoff determined by beam optics.
$>$ The safe distance is $\sim 10 \sigma$ from the beam center.
$>1 \sigma \sim 1 \mathrm{~mm}$
$>$ These optics choices change with energy, but can also be changed within a single energy to maximize either acceptance at the RP, or the luminosity.

Preliminary CAD drawings of RP and OMD Supports and Magnet Cryostats

Roman Pots
OMD

Preliminary CAD drawings of RP and OMD Supports and Magnet Cryostats

Transition region from larger beam pipe containing OMD to smaller pipe containing RP (left) and exit window for neutrals (right).

New Concept

Scattering chamber design for RP sensor packages.

CNPET

MINISTRY OF
SCIENCE TECHNOLOGY AND INNOVATION
brazilian eovernment P) UNITING AND ECEULLDING

Digression: Machine Optics
275 GeV DVCS Proton Acceptance

High Divergence: smaller β^{*} at IP, but bigger $\beta(z=30 m)$-> higher lumi., larger beam at RP

Digression: Machine Optics

275 GeV DVCS Proton Acceptance

High Divergence: smaller β^{*} at IP, but bigger $\beta(z=30 m)$-> higher lumi., larger beam at RP

High Acceptance: larger β^{*} at IP, smaller $\beta(z=30 m)$->
lower lumi., smaller beam at RP

Digression: Machine Optics

275 GeV DVCS Proton Acceptance

High Acceptance: larger β^{*} at IP, smaller $\beta(z=30 m)$->
lower lumi., smaller beam at RP

Digression: Machine Optics

Digression: Machine Optics

Improves low p_{t} acceptance.

Off-Momentum Detectors

Off-Momentum Detectors

- Off-momentum protons \rightarrow smaller magnetic rigidity \rightarrow greater bending in dipole fields.
- Important for any measurement with nuclear breakup!
longitudinal momentum fraction

$$
x_{L}=\frac{p_{z, \text { proton }}}{p_{z, \text { beam }}}
$$

Off-Momentum Detectors

Off-momentum detectors implemented as horizontal "Roman Pots" style sensors.

Same technology choice(s) as for the Roman Pots.

- Need to also study use of OMD on other side for tagging negative pions.

```
Protons
```

Protons
123.75 < E < 151.25 GeV
123.75 < E < 151.25 GeV
(45% < xL < 55%)
(45% < xL < 55%)
0<0<5 mrad

```
0<0<5 mrad
```


Off-Momentum Detectors

Protons
123.75 < $\mathrm{E}<151.25 \mathrm{GeV}$
($45 \%<x L<55 \%$)
$0<\boldsymbol{\theta}<5 \mathrm{mrad}$

Digression: particle beams

- Angular divergence
- Angular "spread" of the beam away from the central trajectory.
- Gives some small initial transverse momentum to the beam particles.

- Crab cavity rotation
- Can perform rotations of the beam bunches in 2D.
- Used to account for the luminosity drop due to the crossing angle allows for head-on collisions to still take place.

Summary of Detector Performance (Trackers)

- Includes realistic considerations for pixel sizes and materials
- More work needed on support structure and associated impacts.
- Roman Pots and Off-Momentum detectors suffer from additional smearing due to improper transfer matrix reconstruction.
- This problem is close to being solved!

Summary of Detector Performance (Trackers)

- All beam effects included!
- Angular divergence.
- Crossing angle.
- Crab rotation/vertex smearing.

Beam effects the dominant source of momentum

 smearing!
Zero-Degree Calorimeter

- Need a calorimeter which can accurately reconstruct photons and neutrons from our various final states (e.g. tagged DIS, incoherent vetoing in e+A, backward u-channel omega production).
- Neutrons and photons react differently in materials - need both an EMCAL and an HCAL!

Zero-Degree Calorimeter

- Need a calorimeter which can accurately reconstruct photons and neutrons from our various final states (e.g. tagged DIS, incoherent vetoing in e+A, backward u-channel omega production).
- Neutrons and photons react differently in materials - need both an EMCAL and an HCAL!

Hadronic Calorimeter - SiPM-on-Tile

Staggered design described in
"Leveraging staggered tessellation for enhanced spatial resolution in high-granularity calorimeters" NIMA 1060 (2024) 169044

为

Hadronic Calorimeter－SiPM－on－Tile

ZDC neutron simulations， ＂strawman＂energy reconstruction

Plot by Sebouh Paul

ZDC neutron simulations，
GNN energy reconstruction

θ range：
中 0－1 mrad
（ $1-2 \mathrm{mrad}$
中 $\quad 2-3 \mathrm{mrad}$
申 $\quad 3-4 \mathrm{mrad}$ YR requirement：
－－－ $50 \% / \sqrt{E} \oplus 5 \%$

Hadronic Calorimeter - SiPM-on-Tile

Position Resolution

HEXPLIT design and algorithm described in
"Leveraging staggered tessellation for enhanced spatial resolution in high-granularity calorimeters" NIMA 1060 (2024) 169044

Radiation Damage from Neutrons

10 cm steps through the length of the ZDC

Peak fluence @ $\mathrm{z}=3615 \mathrm{~cm}$ is 9.4 e 6 neutrons $/ \mathrm{cm}^{2} / \mathrm{fb}^{-1}$

What about the EMCAL? (LYSO or PbWO4)

From: J Arrington et al 2021 J. Phys. G: Nucl. Part. Phys. 48075106

Some physics we didn't discuss yesterday - meson form factors!

Yellow: crystal EMCAL Blue: SiPM-on-Tile

Current configuration

Shorter crystals

Lambda Decay Study
$\Lambda^{0} \mathrm{p}_{\mathrm{T}}$ resolution $-247.5<\mathrm{p}_{\Lambda}<275 \mathrm{GeV} / \mathrm{c}--0<\theta_{\Lambda}<2 \mathrm{mrad}$

Lambda Decay Study
$\Lambda^{0} \mathrm{p}_{\mathrm{T}}$ resolution $-247.5<\mathrm{p}_{\Lambda}<275 \mathrm{GeV} / \mathrm{c}--0<\theta_{\Lambda}<2 \mathrm{mrad}$

Zero-Degree Calorimeter with Stand

Preliminary Design of Zero-Degree Calorimeter with full support structure.

Zero-Degree Calorimeter

Mradil "(c(1)

Radiation Tolerance

Ionizing radiation will cause harm to electronics, sometimes acutely.
$>$ Neutron radiation can cause long-term, cumulative damage to silicon, scintillator, etc.

Have to make sure our simulations have accurate geometry - heavy metals can be a source of additional radiation!!
 photon

Summary and Takeaways

- All FF detector acceptances and detector performance well-understood with currently available information.
- Numerous impact studies done!
- Yellow Report, Detector proposals, and stand-alone impact studies.
- Final technology choices identified, along with suitable alternate designs for risk mitigation.
- More realistic engineering considerations need to be added to simulations as design of IR vacuum system and magnets progresses toward CD-2/3.
- Lots of experience in performing these simulations, so this work will progress rapidly as engineering design matures.
- Already well-established line of communication between detector and physics parties and the EIC machine/IR development group \Rightarrow Crucial for success!!!

Email me if you have any questions: ajentsch@bnl.gov

Backup

Momentum Resolution - Timing

For exclusive reactions measured with the Roman Pots we need good timing to resolve the position of the interaction within the proton bunch. But what should the timing be?

RMS hadron bunch length $\sim 10 \mathrm{~cm}$.

Looking along the beam with no crabbing.
${ }^{\sim} 1.25 \mathrm{~mm}$

What the RP sees.

- Because of the rotation, the Roman Pots see the bunch crossing smeared in x .
- Vertex smearing $=12.5 \mathrm{mrad}$ (half the crossing angle) $* 10 \mathrm{~cm}=1.25 \mathrm{~mm}$
- If the effective vertex smearing was for a 1 cm bunch, we would have .125 mm vertex smearing.
- The simulations were done with these two extrema and the results compared.
$>$ From these comparisons, reducing the effective vertex smearing to that of the 1 cm bunch length reduces the momentum smearing to negligible from this contribution.
- This can be achieved with timing of ~ 35 ps ($1 \mathrm{~cm} /$ speed of light).

Roman Pots

- Active sensor area very large ($26 \mathrm{~cm} \times 13 \mathrm{~cm}$).
- "Potless" design could make better use of space.
- With AC-LGADS + ALTIROC ASIC, current estimates of power dissipation around 400-500 watts for entire subsystem, so roughly 100 watts/layer.
- With potless design, leveraging experience from LHCb VELO for cooling would allow for cooling of the electronics within the vacuum.
- Support structure only to be placed between hadron pipe and wall to avoid interference with the ZDC.

Roman Pots

- Updated layout with current design for AC-LGAD sensor + ASIC.
 (ALTIROC) for use with AC-LGADs.

ASIC size	ASIC Pixel pitch	\# Ch. per ASIC	\# ASICs per module	Sensor area	\# Mod. per layer	Total \# ASICs	Total \# Ch.	Total Si Area
$1.6 \times 1.8 \mathrm{~cm}^{2}$	$500 \mu \mathrm{~m}$	32×32	4	$3.2 \times 3.2 \mathrm{~cm}^{2}$	32	512	524,288	$1,311 \mathrm{~cm}^{2}$

Momentum Resolution - Comparison

- The various contributions add in quadrature (this was checked empirically, measuring each effect independently).

$$
\Delta p_{t, \text { total }}=\sqrt{\underbrace{\left(\Delta p_{t, A D}\right)^{2}}_{\begin{array}{l}
\text { Angular } \\
\text { divergence }
\end{array}}+\underbrace{\left(\Delta p_{t, C C}\right)^{2}}_{\begin{array}{l}
\text { Primary vertex } \\
\text { smearing from crab } \\
\text { cavity rotation. }
\end{array}}+\underbrace{\left(\Delta p_{t, p x l}\right)^{2}}_{\begin{array}{l}
\text { Smearing from } \\
\text { finite pixel size. }
\end{array}}}
$$

- Beam angular divergence
- Beam property, can't correct for it - sets the lower bound of smearing.
- Subject to change (i.e. get better) - beam parameters not yet set in stone
- Vertex smearing from crab rotation
- Correctable with good timing (~ 35 ps)
- Finite pixel size on sensor

Roman Pots @ the EIC

- Updated layout with current design for AC-LGAD sensor + ASIC.

Based on eRD24 R\&D work.

- Current R\&D aimed at customizing ASIC readout chip (ALTIROC) for use with AC-LGADs.

Momentum Reconstruction with Roman Pots

- Use a matrix which describes the transport of a charged particle trajectory through the magnet lattice.
- Matrix unique for different positions along the beam-axis (s)!
- Transforms coordinates at detectors (position, angle) to original IP coordinates.
- Proper usage assumes a reference orbit - all calculations MUST be done in that coordinate system!

$$
\left(\begin{array}{c}
x_{D} \\
\Theta_{D}^{x} \\
y_{D} \\
\Theta_{D}^{y}
\end{array}\right)=\left(\begin{array}{llll}
a_{11} & L_{e f f}^{x} & a_{13} & a_{14} \\
a_{21} & a_{22} & a_{23} & a_{24} \\
a_{31} & a_{32} & a_{33} & L_{e f f}^{y} \\
a_{41} & a_{42} & a_{43} & a_{44}
\end{array}\right)\left(\begin{array}{c}
x_{0} \\
\Theta_{x}^{*} \\
y_{0} \\
\Theta_{y}^{*}
\end{array}\right) \begin{aligned}
& \mathrm{x}_{0}, \mathrm{y}_{0}: \text { Position at Interaction Point } \\
& \Theta^{*}{ }_{x} \Theta^{*}{ }_{y}: \text { Scattering Angle at IP } \\
& x_{D}, y_{D}: \text { Position at Detector } \\
& \Theta^{x}{ }_{\mathrm{D}}, \Theta^{y}{ }_{\mathrm{D}}: \text { Angle at Detector }
\end{aligned}
$$

Momentum Reconstruction with Roman Pots

From BMAD!
$\left(\begin{array}{cccccc}1.88481537 & 28.96766544 & 0.0000 & 0.0000 & 0.0000 & 0.24906255 \\ -0.02114673 & 0.20555261 & 0.0000 & 0.0000 & 0.0000 & -0.03322467 \\ 0.0000 & 0.0000 & -2.25541901 & 3.78031509 & 0.0000 & 0.0000 \\ 0.0000 & 0.0000 & -0.17782524 & -0.14532313 & 0.0000 & 0.0000 \\ 0.05735551 & 1.01363652 & 0.0000 & 0.0000 & 1.0000 & 0.02568709 \\ 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 1.0000\end{array}\right)\left(\begin{array}{c}x_{i p} \\ \theta_{x i p} \\ y_{i p} \\ \theta_{y i p} \\ z_{i p} \\ \Delta p / p\end{array}\right)=\left(\begin{array}{c}x_{28 m} \\ \theta_{x, 28 m} \\ y_{28 m} \\ \theta_{y 28 m} \\ z_{28 m} \\ \Delta p / p\end{array}\right)$

- Able to benchmark transport through lattice using machine codes, and comparing with what GEANT produces (e.g. what we calculate "by hand" with GEANT).
- The machine magnet code is called MAD-X or BMAD.
- Question: what happens when our measured trajectory deviates too much from the reference orbit?

$$
(1.88) x_{i p}+(28.97) \theta_{x i p}+(0.249) \frac{\Delta p}{p}=x_{28 m}
$$

... Etc.

$$
(-0.0211) x_{i p}+(0.206) \theta_{x i p}+(-0.033) \frac{\Delta p}{p}=\theta_{x, 28 m}
$$

Momentum Reconstruction with Roman Pots

From BMAD!
$\left(\begin{array}{cccccc}1.88481537 & 28.96766544 & 0.0000 & 0.0000 & 0.0000 & 0.24906255 \\ -0.02114673 & 0.20555261 & 0.0000 & 0.0000 & 0.0000 & -0.03322467 \\ 0.0000 & 0.0000 & -2.25541901 & 3.78031509 & 0.0000 & 0.0000 \\ 0.0000 & 0.0000 & -0.17782524 & -0.14532313 & 0.0000 & 0.0000 \\ 0.05735551 & 1.01363652 & 0.0000 & 0.0000 & 1.0000 & 0.02568709 \\ 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 1.0000\end{array}\right)\left(\begin{array}{c}x_{i p} \\ \theta_{x i p} \\ y_{i p} \\ \theta_{y i p} \\ z_{i p} \\ \Delta p / p\end{array}\right)=\left(\begin{array}{c}x_{28 m} \\ \theta_{x, 28 m} \\ y_{28 m} \\ \theta_{y 28 m} \\ z_{28 m} \\ \Delta p / p\end{array}\right)$

- Able to benchmark transport through lattice using machine codes, and comparing with what GEANT produces (e.g. what we calculate "by hand" with GEANT).
- The machine magnet code is called MAD-X or BMAD.
- Question: what happens when our measured trajectory deviates too much from the reference orbit?

For a 275 GeV beam, a 270 GeV proton has an xL of 0.98.

A Simplistic General Method

- Begin with a set of "input tuning cards" which contain many reference trajectories for calculating the matrices.

A Simplistic General Method

- Plot the 36 matrix values (and 4 offsets) as a function of xL .
- Fit the resulting plots with $2^{\text {nd }}$-degree polynomials.

0.0000
0.0000
-2.25541901
-0.17782524
0.0000
0.0000
0.0000
3.78031509
-0.14532313 -0.14532313
0.0000 0.00000.00000.24906255 $0.0000-0.03322467$ $0.0000 \quad 0.0000$ 0.0000 0.0000 $1.0000 \quad 0.02568709$ $0.0000 \quad 1.0000$

b0_matrix_values_vs_xL

a1_matrix_values_vs_xL

b1_matrix_values_vs_xL

- The 40 fit functions (36 matrix parameters +4 offsets) then represent the ingredients to calculate the needed matrix in realtime at reconstruction.
- All that is needed is a lookup table to get the $x L$ value for an event based on the coordinates at the Roman Pots.

A Simplistic General Method

- Extract x_{L} value from lookup table for the $\left(\theta_{x, r p}, x_{r p}\right)$ ordered pair.

- "Chromaticity plot" serves as a lookup table to use RP coordinates to find the xL value.
- xL is then used to evaluate the correct matrix for reconstruction.

A Simplistic General Method

- Now we can "build" the correct matrix with the correct offset values for a given trajectory and perform our kinematic reconstruction.

Results - Momentum

- Comparing "static" BMAD matrix (left) with dynamic matrix calculation (right).

[^0]
Results - pT

- Comparing "static" BMAD matrix (left) with dynamic matrix calculation (right).

[^1]
Some Final Comments on Reco in the RP

- The accelerator/machine folks are used to using BMAD/MAD-X \rightarrow They do not know GEANT!
- As a result, we have to do our checks and studies in a common language to ensure errors/problems are caught early.
- The method presented will obviously be improved using machine learning methods, which is next on the list of things to do.

[^0]: "x(1)

[^1]: "(x)

