SiPM capacitance (and more) measurement

Can be done in various ways, but one good way that fits available tools here is to measure the reflection coefficient of SiPM on a 50 Ω cable. And then fit the reflection data with a circuit model of SiPM. Not shown here but a known value resistor + capacitor was also measured to verify the method.

6×6 mm² SiPM shown

reflection coefficient (S11) vs. frequency, and fit

Fit results

SiPM circuit model (simplified). Net equivalent of N cells in parallel.

diode contributes capacitance and some resistance

	3×3 mm ² – a randomly chosen S14160	-3015PS; 6×6 mm ² – a rand	lomly chosen S14160-6015PS
--	--	---------------------------------------	----------------------------

Size, mm ²	bias, V	С ₁ , р F	C ₂ , pF	R, Ω	L, nH
3×3	20	886.3	192.0	15.25	8.392
3×3	38	609.0	205.8	13.32	8.368
3×3	40	592.4	207.3	13.19	8.358
3×3	42	577.7	208.6	13.04	8.357
6×6	20	3544	574.4	4.957	10.143
6×6	38	2428	598.0	4.407	10.113
6×6	40	2363	600.5	4.361	10.109
6×6	42	2307	603.2	4.318	10.104

- 6×6 mm² device indeed is mostly just like 4× 3×3 mm² devices in parallel
 - somewhat higher R and much higher L than naïve value; probably makes sense (bigger chip)
 - C_2 is 25% smaller than expected? I don't understand that
- C₂ and L are fairly independent of bias, as expected since they should be predominantly connection parasitics
- C₁ has expected dependence on bias voltage, roughly ~ 1/sqrt(V)
- R is weakly dependent on bias voltage (at higher bias, thicker depletion → thinner bulk → expect lower R)

Details matter for circuit design / simulation, but executive summary is these devices are the same excepting size; capacitance & all that *depends only on overall area implemented in the system (in a parallel connection)*.

SiPM choice discussion

	3×3 mm²	6×6 mm²	
Capacitance per unit area	64.2 pF/mm2	64.1 pF/mm2	
irradiated DCR per unit area	same (details TBD)		
cost	(stated elsewhere)	(stated elsewhere)	
PDE	same		
chip to PCB thermal impedance *	"standard"	new and improved	
package self-alignment in soldering	probably worse	probably better	
array to be used	4 × 4 or 4 × 5	2 × 2	
readout ch to be used per crystal **	1, 2, 4, , 16 or 20	1, 2, or 4	

* This factor may turn out to be important after radiation damage, to avoid over-warm SiPM's having yet higher DCR, or warming the crystals too much.

** I do not believe we will benefit from multiple readout channels per crystal, particularly for the discrete/COTS readout option. But it is conceivable and certainly worth contemplating, especially in a low cost ASIC-based readout. Nevertheless, I don't believe we will use >4 readout channels per crystal... So this added flexibility in 3×3 mm² case, I do not believe it is really useful.