

MPGD FEB – RDO connectivity

irakli.mandjavidze@cea.fr

ePIC eDAQ group meeting 27/Jun/2024

- Options for placing RDOs
- Reminders
 - \rightarrow Salsa Interface
 - \rightarrow FEB powering schemes
 - \rightarrow FEB-RDO connectivity options
- Number of MPGD FEBs and RDOs
- Envisaged studies of FEB-RDO connectivity
- Summary

<u>cea</u> irfu

Reminder on MPGD sub-systems and channel counts

- Cylindrical Micromegas Barrel Layer : CyMBaL : ~30k channels
 → 32 tiles of 1024 channels each
- µRWELL Barrel Outer Tracker : µRWell-BOT : ~100k channels
 - \rightarrow 24 modules of 4 096 U-V strips each
- $\mu RWell End Cap Tracker : \mu RWell-ECT : ~30k channels$
 - \rightarrow 8 half-disks of 4 000 X-Y strips each
- ~160k-channel heterogeneous system
 - \rightarrow Micromegas, µRWell, barrel, endcap, curved, planar, circular
- Common approach to acquire data from different types of ePIC MPGDs
 - \rightarrow Use same frontend ASIC
 - $\rightarrow\,$ Share frontend design between groups
 - Adapt form factor if needed

Spatial constraints for inner barrel cylindrical tracker

• Space is stringent: 6 cm

cea irfu

 \rightarrow Detectors, gas pipes, HV cables

SVT MPGDs ToF (fiducial volume)

• On detector frontend electronics

 \rightarrow FEBs + LV distribution + RDO interface cabling + cooling

5

Options for placing the RDOs

- 3 options
- Option 1 :
 - \rightarrow Better for installation and maintenance
 - \rightarrow Better for powering
- Options 1-2-3
 - \rightarrow Difficult for bulky data cables
 - In addition to services
- Impact on FEB RDO interface
 - \rightarrow Optical versus electrical
 - $\rightarrow~\text{ASICs}$ per FEB
- Impact on power consumption and cooling

Example of CyMBaL configuration under study

• 32K channels

- 128 256-channel FEBs

 → 4 Salsa ASICs per FEB
- 32 1024-channel RDOs
 → 4 FEBs per RDO

16 Salsa-s, 4 FEBs, 1 RD0 = 1024 channels

FEBs of inner detector modules On the periphery

Is there an extra length accounted for cables ?

- Looks like FEB-RDO cable length for inner detector modules is estimated from the module edge
 - \rightarrow Probably there is some extra 0.5 m, but does not change an overall picture

FEBs of inner modules are here

irakli.mandjavidze@cea.fr

cea irfu

Salsa interface options

- FEB frontend board with readout ASICs
 - \rightarrow MPGD : common design based on Salsa, form factor adapted to detector module geometry
- RDO readout module first stage of FEB data aggregation, last stage to dispatch clock & control
 → Mostly common design framework between sub-detectors, different form factor
- DAM data aggregation module interface with computing and global timing and control unit (GTU)
 → Common design for all sub-detectors
- Downstream towards detector : clock, control, monitoring
- Upstream towards storage : physics, calibration, monitoring data

cea irfu

Support of "traditional" prevalent interface

- Important number of heterogeneous external interface signals proper for each functionality
 - \rightarrow Clock_diff_in, SynCmd_diff_in
 - Synchronous commands decoding options in backup
 - \rightarrow SCL in, SDA io
 - Configuration of ASICs on a FE board in series : longer startup and recovery times.
 - \rightarrow Up to 4 Data diff out serial links
 - \rightarrow Additional IOs like Trigger_diff_in, TrigPrim_diff_out
- May require an on-board companion intelligence for control & aggregation

Alternative "unified" interface

- Single encoded RX line for Clock, SynCmd, Trigger, configuration and monitoring
 - \rightarrow Minimal external interface: a single diff RX line + at least one diff TX line
 - Simplest case: only 4 pins (Rx_p / Rx_n + Tx_p / Tx_n) to communicate with the chip
 - Parallel configuration of ASICs possible : fast startup and recovery time
- Relatively complex initialization phase requiring collaboration from the remote partner
 - \rightarrow Clock recovery phase followed by
 - \rightarrow Data reception and transmission phase

FEB powering options

FEB power distribution options : DC-DC

- DC/DC-based LV distribution: to be magnetic field tolerant
 - \rightarrow Remote power supply distributes 12V with a low voltage drop over 20 m cables
 - Say less than 0.5V
 - The lower the drop the lower the power dissipation in cables but the large is their cross-section

- \rightarrow Higher efficiency
- \rightarrow Low cross-section power cables
- \rightarrow Less overall^{*} mW/ch

*Overall : Power supply W / nb of channels includes loses in cables, regulator inefficiencies

- \rightarrow DC/DC regulators might be bulky and a source of EMI
 - Space + extra material for shielding
 - Not clear if 80% efficiency can be really achieved

FEB power distribution options : LDO

• LDO-based LV distribution

- \rightarrow Remote power supply distributes 2.1V and any auxiliary voltages with a low voltage drop over 20 m cables
 - Say voltage drop is < 0.5V
 - The lower the drop the lower the power dissipation in cables but the large is their cross-section
- \rightarrow Low cross-section sense wires for remote power regulation

- \rightarrow Lower efficiency
- \rightarrow High cross-section power cables
 - Space due to thick cables
- \rightarrow High overall^{*} mW/ch

*Overall : Power supply W / nb of channels includes loses in cables, regulator inefficiencies

About powering and cooling

Count on the ePIC community effort to devise compact DC-DC regulators

- \rightarrow ~2 T magnetic field and mild radiation tolerant
- \rightarrow Crucial for FEBs
- Need an input / advise from RDO colleagues on RDO powering scheme
 - \rightarrow Can be problematic if RDOs are on-detector or within the magnetic field area
 - \rightarrow Understand RDO power consumption
- Cooling not yet addressed
 - \rightarrow To be started for FEBs
 - \rightarrow To be understood for RDOs if within the detector

FEB-RDO connectivity

256-channel FEB with electrical "unified" interface

• FEB

- \rightarrow Low active component count: minimal power consumption
 - ~30-35 mW / channel
 - 1 mm² (DC/DC + LDO) or 5.6 mm² (LDO only) wires to power a FEB

• RDO

- \rightarrow Study is needed to evaluate the distance
 - ALICE MFT : up to 7m with ~1 Gbit/s links and some number of intermediate connectors
 - Our experience with CLPS drivers : 2-3 m with pre-emphasis techniques @ ~500 Mbit/s
 - The need of active drivers buffers to be evaluated and their impact on power consumption
- $\rightarrow\,$ May suite $\mu RWell\text{-BOT}$ and partially $\mu RWel\text{-ECT}$ for option 2 RDO placement

• Attention must be payed to ground loops and to noise pickup over long distance

256-channel FEB with optical "unified" interface

• FEB

- \rightarrow Low active component count
 - Samtec FireFly : reported to stand TID of 50-100 krad and neutron fluence of at least 5x10¹¹ n_{eq} / cm²
 - ~35-37 mW / channel 15% increase compared to pure electrical interface
 - 1 mm² (DC/DC + LDO) or 6 mm² (LDO only) wires to power FEB
- RDO
 - \rightarrow Can be placed anywhere in experimental hall with no particular environmental restrictions
- Optimal tradeoff between complexity of the on-detector electronics and its power consumption

Connectivity volume

FEBs and RDOs for MPGDs

• Estimates of operational quantities for MPGDs assuming 256-channel FEBs

		CyMBaL	µRWell-BOT		μRWell-ECT		
	Tile	Sub-detector	Module	Sub-detector	½ disk	Sub-detector	
FEB	4	128	16	384	16	128	
RDO	1	32	4	96	4	32	

- As many cable assemblies as FEBs
- CyMBaL
 - \rightarrow Assume ±Z symmetry in cable distribution
 - \rightarrow Assume even distribution in Φ over 500 mm radius
 - \rightarrow 64 cable assemblies over 3.14 m
 - \rightarrow 5 cm / cable assembly
- Estimations for μ RWell detectors : need to coordinate ourselves
 - \rightarrow Probably similar situation for µRWell-ECT
 - $\rightarrow \mu RWell-BOT$: 3 times more cables but also greater perimeter
- Number of RDOs is considerable : place ?!

irakli.mandjavidze@cea.fr

Cable assembly types

Parallel optics

Long, halogen free, low smoke ...

Short pigtail / on board

- \rightarrow Optical power budget to be estimated
 - Usually fine, but long term radiation effect needs to be understood
- \rightarrow Low cross-section even with protection jacket
- Twinax cable assemblies

- \rightarrow Compact enough to fit FEBs but may be too bulky for cable trays
 - 320 units to bring out at each Z side
- \rightarrow Need to understand if low smoke halogen free options exist
- \rightarrow Rigidity, weight

Can we get rid of bulky copper cable assemblies ?

• Closely integrated FEBs and RDOs

- \rightarrow Use "traditional" interface if on the same board
- \rightarrow Short twinax and flat cables in between if on separated boards
- Merged 256-channel FEB / RDO : worst power consumption scenario
 - \rightarrow 50% increase compared to a FEB with electrical RDO interface
 - 45-50 mW / channel
 - 1.5 mm² (DC/DC + LDO) or 8 mm² (LDO only) wires to power FEB
- An RDO per detector module : 4 FEBs / RDO 1024 channels
 - \rightarrow ~11% more power compared to a FEB with electrical RDO interface
 - 33 37 mW / channel
 - 1 mm² (DC/DC + LDO) or 6 mm² (LDO only) wires to power FEB
- Estimations for favorable VTRX+ case, should be higher with COTS transceiver
- Cooling and its additional infrastructure !
- SEU effects need to be understood, acceptable failure rates to be agreed on
- Powering FPGA requires "whole lotta" different voltages : (3V3), 2.5V, (1.8V), 1.2V, 1V, (0.9V)
 - \rightarrow Deriving them from a single auxiliary power source may be inefficient
 - \rightarrow Avoid mixing analog digital power sources

cea irfu

FEB-RDO connectivity studies

cea irfu

 \rightarrow FMC-based board to use general purpose FPGA IOs

• Use of commercial evaluation kits for FireFly

- \rightarrow Power consumption of 4-lane bidirectional optical component
- \rightarrow Cooling needs
- Radiation tests
 - \rightarrow PRBS traffic loopback to detect Single Event Transients
 - \rightarrow FMC extender cables to separate FireFly-s from FPGA development kit

Develop (port) Salsa "Digital" on an FPGA platform

- Accelerate development of the DSP and serial lines
- Progress on Salsa2 test bench development
- Produce a platform to study and validate FEB-RDO interface

irfu

cea

FPGA platform

- Preferably cheap to be produced in required quantities if needed
- Sufficiently performant to achieve ~1 Gbit/s speeds over standard IOs with embedded SERDES IPs
- A possible candidate could be AX7035B evaluation board from ALINX with ARTIX-7 FPGA from Xilinx
 - \rightarrow XC7A35T-2FGG484I
 - \rightarrow 256 MB DDR3 SDRAM
 - \rightarrow 1 GE
 - \rightarrow 2 HDMI
 - \rightarrow USB
 - \rightarrow 2 40-pin expansion ports
 - → **\$130**
- AX7035B = Salsa
 - \rightarrow Design of central CMN logic exists

130 mm

FEB emulation platform

- A relatively simple almost passive PCB
 - \rightarrow 4 Salsa emulators
 - 2 on each side to fit 6U Eurocard size
 - \rightarrow 2 FireFly connectors either for optical or electrical components
 - FireFly 1 : 8-lane for "Unified" interface
 - FireFly 2 : 8-lane for "Traditional" interface
 - Clock_in, SyncCmd_in, 4 TX_out, 2 I2C
 - \rightarrow Rafael ran-out ASIC for Clock and Sync command distribution
 - Radiation hard
 - To be used for "Traditional' Salsa interface
 - \rightarrow LVDS driver / buffers, I2C ~?
 - For long distance tests
- Radiation qualification tests
 - $\rightarrow\,$ Salsa emulators separated from FireFly
- FEB-RDO connectivity / protocol development and validation
 - \rightarrow RDO-side firmware plug-ins
 - \rightarrow RDO-side hardware interface

irakli.mandjavidze@cea.fr

Summary

- Optical FEB-RDO link is considered as preferable
 - \rightarrow No restriction on RDOs
 - \rightarrow Easier to maintain
- FireFly optical components to be evaluated
 - \rightarrow Power consumption @ 1 Gbit/s rate
 - \rightarrow Radiation tolerance to be confirmed
- Powering of FEBs with DC-DC regulators to be followed
 - \rightarrow Where to place them if bulky
 - e.g. place them in the option 1 or 2 locations instead of RDOs
- Cooling options need to be studied
- Follow developments on integrated FEB RDO solution
 - \rightarrow Power consumption, optical interface
 - Any gain in power and cost with Spartan US+ versus Artix US+ ?
 - \rightarrow If feasible for MPGDs try to adapt
- Need a close collaboration between the MPGD teams and the ePIC integration team

Backup

CyMBaL – Module

Charge 3

Electron-Ion Collider Tracking Detectors Review, March 20-21, 2024

© F. Bossù, CEA Irfu

µRWELL-BOT Module:

Charge 2,3

31

µRWELL-BOT module

- ✤ Thin-gap (1-mm drift) hybrid amplification GEM-µRWELL detector
- ✤ Capacitive-sharing U-V strips readout layers(45^o stereo angle)
- Pitch: 1.14 mm (1790 U-strips and 1790 V-strips per modules)

On-detector Front End Boards (FEBs) based on SALSA chips

- ✤ 14 FEB / modules (assuming 4 SALSA chips i.e 256 e-ch / FEB)
- Direct connection on the back of the modules (no need for flex cables)

Electron-Ion Collider

Tracking Detectors Review, March 20-21, 2024

© Kondo Gnanvo, Jefferson Lab

Detector, Electronics Readout, and Services

Charge 3

32

Are the current designs and plans for detector, electronics readout, and services sufficiently developed to achieve the performance requirements?

1000 mm

MPGD Endcaps configuration

- The two disks are mounted facing each another
- The FEBs are connected perpendicularly to the disks and will not overlap the active area

Electron-Ion Collider Tracking Detectors Review, March 20-21, 2024

Twinax copper cable performance example: Alice MFT

• Muon Forward Tracker: ladders with a variable number of ALPIDE silicon sensors

- Pixel = 29 x 27 μ m²
- ZS, triggered or continuous
- 1.28 Gbit/s upstream data link
 - Pre-emphasis capability
- 40 MHz clock
- 40 Mb/s control

Samtec 12-ribbon FireFly twinax cables with low profile connectors

JUN |

 \rightarrow Signal integrity studies

- Up to 8m of cable and 9 connectors in the path
- Reliable communication with BER better than 10⁻¹⁴
 - Adjust pre-emphasis

cea irfu

• FE ASICs are directly interfaced to VTRX+

- \rightarrow Downlink with embedded clock / sync / async data distributed with high fidelity fan-out
- \rightarrow Requires an "innovative" ASIC interface
 - Working on CDR circuitry for Salsa

• FEB

- \rightarrow Radiation hardened ASICs
- \rightarrow Minimal power consumption after electrical interface option: only VTRX+ consumption added
 - ~ 32-35 mW / channel 8% increase compared to a FEB with electrical RDO interface
 - 0.9 mm² (DC/DC + LDO) or 5.8 mm² (LDO only) wires to FEB
- RDO : common hardware

CERN VTRX+

²²² ^{irfu}Common practices to improve signal integrity on long transmission lines

ePI

- Drive strength choice of differential lines:
 - \rightarrow 1 mA, 2mA, 4mA, 8mA
- Pre-emphasis strength and duration:
 - \rightarrow 1 mA, 2mA
 - \rightarrow 150 ps, 300ps
- Rafael clock/command fan-out example (more in backup and
 - \rightarrow 130 nm 3-to-1-to-13 radiation hard chip
 - Developed for CMS timing detectors
 - \rightarrow 1.2 V
 - \rightarrow CLPS differential
 - CERN low power
 - 200 mV, 400 mV diff swing
 - \rightarrow Measurements over 2 m cable
 - Coaxial SMAs
 - \rightarrow Additive jitter ~2 ps
 - Specs up to 400 MHz
 - Satisfies 640 MHz
 - Decent at 1.28 GHz
 - \rightarrow Irradiation tests
 - 6 m SMA cables
 - 200 Mbit/s

Modern FPGA receivers equipped with circuitry to determine optimal sampling point

Error detection and correction sequences improve further BER figures Discussion on RDO 22/Jun/2023

<u>cea</u> irfu

Clock and fast command distribution example

- Rafael Radiation-hArd Fan-out ASIC for Experiments at LHC developed at Irfu, CEA Saclay
 - \rightarrow 3 inputs and 13 outputs
 - \rightarrow CLPS signaling
 - CM voltage: 0.6 V
 - Differential swing: 200-400 mV
 - Programmable drive and emphasis
 - \rightarrow Single buffer: any input to 13 outputs
 - \rightarrow Double buffer
 - Input 1 to 6 outputs
 - Input 2 to 7 outputs
 - \rightarrow Up to 400 MHz and beyond
 - \rightarrow Low additive jitter of < 2 ps
 - \rightarrow LHC-level TID, neutron, SEU
 - \rightarrow 130 nm technology
 - \rightarrow Possibility to embed a PLL
 - If no jitter cleaner PLL in ASICs

- Commercial counterparts
 - $\rightarrow \text{IDT 8P34S2108: https://www.renesas.com/eu/en/document/dst/8p34s2108-datasheet}$
 - \rightarrow TI CDCLVD1216: http://www.ti.com/lit/ds/symlink/cdclvd1216.pdf

Long distance electrical links with Rafael drivers

• Low jitter transmission over 3-4 m coaxial cables

- \rightarrow Adjust drive strength between 1 mA and 2 mA
- \rightarrow Adjust pre-emphasis strength : 0 mA (none), 1 mA, 2 mA
- \rightarrow Adjust pre-emphasis duration : 160 ps, 320 ps, 480 ps

cea irfu