New York Scientific Data Summit 2024 Digital Twins for Wind Energy and Leading Edge Erosion Detection

Susan Minkoff¹, Aidan Gettemy, John Zweck, and Todd Griffith²

Department of Mathematical Sciences University of Texas at Dallas

Special thanks to Elaine Spiller³ and Ipsita Mishra⁴ for their guidance.

September 16-17, 2024

¹Department of Applied Math, Computational Science Initiative, BNL

²Department of Mechanical Engineering, University of Texas at Dallas

³Department of Mathematical and Statistical Sciences, Marquette University

⁴PhD Candidate; Department of Mechanical Engineering, University of Texas at Dallas

Wind Energy: Opportunities and Challenges

- US has 73,000+ turbines, which generate over 150 GW.
- Maintenance costs are a large share of the energy price.⁵
- Blade faults include:
 - Cracks
 - Skin/adhesive debonding
 - Delamination
 - Fiber breakage
 - Edge erosion

Image Source: demoinesregister.com

⁵J. Tautz-Weinert S.J. Watson, Using SCADA data for wind turbine condition monitoring, IET Renewable Power Gen.,11 (2017), pp. 382-394

Remote Monitoring

Image Source: energyintel.com

Image Source: industry.sitka.com

Early fault detection via remote sensor data improves maintenance and safety.

Leading-Edge Erosion

⁷A. Sareen et al., *Effects of leading edge erosion on wind turbine blade performance*, Wind Energy, 17 (2014), pp. 1531-1542

⁸A. Shankar Verma et al., A probabilistic long-term framework for site-specific erosion analysis of wind turbine blades, Wind Energy, 24 (2021), pp. 1315-1336 4/16

Simulation

Definition: *OpenFAST*, from the National Renewable Energy Laboratory (NREL), couples multi-physics modules to model turbine responses to realistic wind/weather simulations.⁹

- InflowWind: wind conditions
- AeroDyn: aerodynamics: lift, drag

- ElastoDyn: structural motions
- ServoDyn: control inputs/outputs

⁹J. Jonkman, *The new modularization framework for the FAST wind turbine CAE tool*, in Proceedings of 51st AIAA aerospace sciences meeting including the new horizons forum and aerospace exposition, 2013

Edge-Erosion Simulator Design

Our Edge-Erosion model is a new adaptation of the OpenFAST framework.

OpenFast Inputs and Outputs

OpenFAST Erosion Model Input Parameters

Input	Nominal Value	Range	Units
Wind Direction	0	[-15, 15]	(m/s^{2})
Wind Speed	11.4	[3, 25]	(m/s)
Air Density	1.225	[1.1, 1.42]	(kg/m^3)
Wind Shear Coefficient	0.2	[0, 0.5]	(-)
Erosion Severity	0	[0, 1]	(-)

OpenFAST Erosion Model Output Quantities

Output	Units	Description
Blade Tip Acceleration	(m/s^2)	Blade local flapwise acceleration
Drag Sensor	(-)	Drag sensor located in blade region 6
Lift Sensor	(-)	Lift sensor located in blade region 6
Generator Power	(MW)	Generator Power after control and electrical effects
Blade Root Moment	(<i>kN</i> – <i>m</i>)	Blade edgewise moment (caused by edgewise forces)
Blade Root Moment		at the root of the blade.

OpenFAST Output

For this model, each simulation takes \approx 45 seconds.

GP Predictive Emulator With Uncertainty¹⁰

¹⁰Sacks, J., Welch, W. J., Mitchell, T. J., and Wynn, H. P. (1989). Design and Analysis of Computer Experiments. Statistical Science, 4(4):409–435.

Gaussian Process Modifications

Surrogate modeling of a wind turbine must account for:

- 1. Vector Valued Outputs: turbines are equipped with a variety of sensors.
 - Solution: Parallel Partial Gaussian Process emulator ¹¹
- 2. Range Limited Outputs: e.g., generator power is constrained to \leq 5MW.
 - Solution: zGP emulator ¹²

Operation	Time
Simulation Routine	45.72 s
PPzGP Imputation (173 training points)	1415.85 s
Fit PPzGp (173 training points)	3.443 s
Predict from PPzGP	0.0093 s

¹¹M. Gu, J.O. Berger, Parallel Partial Gaussian Process Emulation for Computer Models with Massive Output, Annals of Applied Statistics, (2016), pp. 1317-1347

¹²E. Spiller et. al., The Zero Problem: Gaussian Process Emulators for Range-Constrained Computer Models, SIAM/ASA UQ, (2023), pp. 540-566

PPzGP Generator Power Predictions

- Training set size: 173 design points
- Testing set size: 37 points.

PPzGP Root Moment Predictions

- Training set size: 173 design points
- Testing set size: 37 points.

Erosion Severity Classification Experiment

Objective: Use the **PPzGP** surrogate model to train an erosion severity classifier.

- Compare two random forest classifiers:
 - One trained on 500 OpenFAST simulated data points.
 - Second trained by sampling 5000 points from the emulator (very cheap, 2s total time).
- Experimental design space includes
 - 1. Randomly vary erosion within chosen level.
 - 2. From sensitivity analysis 3 most influential environmental parameters to vary for the design are wind direction, wind speed, and air density.
 - 3. train two classifiers using 10-fold cross validation and test on same data.
 - 4. Goal: classify erosion into 5 levels from no erosion (level 0) to highest erosion (level 1).

Results: Simulation Trained Classification Model

Results: Emulation Trained Classification Model

Conclusion: Emulation for Erosion Detection

	Simulation Trained	Emulation Trained
AUC mean	0.969	0.983
AUC std	0.026	0.015
% Improvement	(-)	1.508%
Accuracy mean	0.828	0.871
Accuracy std	0.037	0.045
% Improvement	(-)	5.169%

- Emulator functions as an accurate reduced order model of the full simulator.
- One OpenFAST simulation takes 45s.
- Emulator sampling/prediction takes 0.01s.
- Training the ML model on data directly from simulator and on data from emulator gives similar prediction accuracy.