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What is a digital twin?
• For the purposes of this talk:

• A predictive computational model of a specific, real-world system

• Can be physical simulation, AI, anything else

• Incorporates decision making (control, planning, design optimization, …)

• Automatically “ingests" data about the system and updates its 

representation of reality, following these decisions

• Learn → Predict → Act → Learn → …


• Beyond this, I am not going to open the terminology can of worms!



What is a predictive digital twin, computationally?
• A mechanistic (“physical”) simulation

• Constructed to emulate a specific system

• Initialized with data (state estimation), or “tuned” to data (parameter estimation)


• A data-driven model (usually statistical/machine learning)

• Data as inputs to a prediction (“state estimation”), or trained to data 

(“parameter estimation”)

• Both of these 
• A ML model that uses both simulated and real-world data

• A ML model of data from a simulation that has been tuned to the real world

• A mechanistic simulation that contains AI components or submodels
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Uncertainty in digital twins
• Much uncertainty quantification (UQ) for DTs focuses on state estimation: the DT 

updates its state representation with data from the measured system

• But digital twins are not identical twins: they imperfectly model the true system

• “All models are wrong, but some are useful” –G. Box
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Uncertainty in digital twins
• Much uncertainty quantification (UQ) for DTs focuses on state estimation: the DT 

updates its state representation with data from the measured system

• But digital twins are not identical twins: they imperfectly model the true system

• “All models are wrong, but some are useful” –G. Box; “But they’re still wrong” –me 
• Learn and quantify errors in their representation of the system dynamics

• This could be parameter estimation, or system identification, or equation learning


• Data driven-models: 
• Pro: based on the observed, real world

• Con: hard to make predictions outside the scope of the observed data


• Physical simulation: 
• Pro: can make predictions under new, unseen conditions (extrapolate)

• Con: some physics is unknown/intractable, simplified theory approximations



Parameter uncertainty in simulations
• Example: nanomaterial self-assembly

• Phase separation dynamics in block copolymer systems

• Applications to batteries, photovoltaics, etc.


• “Digital twin” is a simulation of the binary nonlocal Cahn-Hilliard equation

• Partial differential equation (PDE) system:


• Bayesian parameter estimation: probabilistically fit the PDE coefficients to data

K. Yager

A. DeGennaro
Data

Digital twin DT parameter 
estimates

∂c/∂t = ∇2(−ϵ2 ∇2c) + ∇2(c3 − c) − σ(c − c̄)



A probabilistic hierarchy of digital twins
• Tradeoffs between DT accuracy and speed

• Molecular dynamics (MD): gold standard but slow 

(thousands of hours)

• Cahn-Hilliard PDE (CH): captures coarse-scale 

dynamics (fraction of an hour)

• ML: fraction of a second, but little training data


• Build a multifidelity hierarchy of twins

• Real world = MD + MD error

• MD = CH(parameters) + CH error

• CH = ML(parameters) + ML error


• Uncertainty in parameters and errors at each level

• Use in a DT decision loop: calibrate → predict → 

select next experiment → calibrate

MD

CH

ML

(a) Training points. (b) GP mean. (c) GP std dev.

Figure 1: GP surrogate for qu⇤(⇠).

Figure 2: Two solutions with the lowest (left) and highest (right) values of qu⇤(·).

learn a significant amount about the parameter l, but not as much about the other two parameters,
since the map qu⇤(⇠) is fairly flat along the other two dimensions.

(a) Posterior samples.

(b) Individual parameter posterior distributions.

Figure 3: Posterior (histograms), prior (cyan), true value (black) and training data ranges (red).
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Learning a simulation-based digital twin
• We know the Cahn-Hilliard PDE describes 

structure formation in a simple set of cases

• We don’t know what effective PDE describes the 

coarse-grained dynamics of harder cases

• We may be able to derive it by hand, but this is 

laborious for each new system


• Can we learn the PDE? ( )

• Treat right hand side (RHS) as unknown function

• cell neighbor states → next cell state

• Insert neural net into PDE solver


• Once equations have been learned, can run the 
twin at unseen initial or boundary conditions (unlike 
ML approaches that train on input/output pairs)

∂c/∂t = ???

 uit+1 = N(uit, ui+1t, ui-1t)

PDE stencil operator

CH solver Neural PDE

Jantre et al.



Inconvenient truth of modeling: approximations
• Climate example: models differ mostly due to 

their representations of cloud dynamics


• Clouds are approximated (too small to simulate)


• Many choices involved in approximations:

• numerical time and space discretization schemes

• closure models

• other unresolved sub-grid approximations

• choice of processes to include


• In a climate model, ~10% of the code is the 
PDEs you’re solving, and ~90% is 
approximations to all the physics you’re not 
solving from first principles


• True for many complex systems
DOE E3SM global climate model 

(25 km resolution)

NASA GEOS-5 global 
cloud resolving model 

(1.5 km resolution)



Hybrid physics+ML digital twins
• Can we build a “hybrid” digital twin that makes use of physics we know and trust, 

but learns physics we don’t know from data?

• Example: partial differential equation system


• 

• f(·) embodies “known physics” equations (e.g. heat or wave equations …)

• g(·) embodies “unknown physics” that can be learned from data

• Can represent correction terms, closure schemes, missing processes, …


• The uncertainties are now functional (what should go on the PDE’s right hand side?), 
rather than parametric 
• Formally an infinite-dimensional space

• Can parameterize it with neural net weights, but still high-dimensional

∂u/∂t = fPDE(u(x, t); p) + gML(u(x, t); w)



• “Offline learning”: have measurements of the unknown physics, and we fit a function to it

• “Online learning”: don’t know what the function should look like, but we can guess a 

functional form, run the hybrid model, and see what it predicts

• Differentiable programming: backpropagate DT prediction errors through both ML 

component and the simulation solver (adjoint model)

Hybrid physics+ML digital twins

Kochkov et al. (2024)

Learning an artificial viscosity 
scheme in shock hydrodynamics

Melland et al. (2021)

Learning unresolved cloud physics 
in a climate model

Fitting a climate model by 
backpropagation



Hybrid physics+ML digital twins
• Example: reaction-diffusion PDE

• 


• 


• Can we recover the unknown function g(·) from 
solution data, ?

• And propagate its uncertainty to predictions?


• How do we handle the high-dimensional 
uncertainty space of functions?

∂v1/∂t = D1 ∇2v1 + v1 − v3
1 − v2 − 0.005

∂v2/∂t = D2 ∇2v2 + gML(v1, v2)

(v1(t), v2(t))

Jantre et al.
Akhare et al. (2023)

PDE Neural PDE



Functional subspace reduction
• Neural network (NN) weight space is too high-

dimensional to explore uncertainties

• Each function represented by a NN requires 

an expensive PDE solve to compute the loss

• → Find a low-dimensional parameter subspace 

that captures most of the predictive uncertainty

• SGD-PCA subspace (Izmailov et al., 2019):

• Record weights visited during stochastic 

gradient descent; compute principal 
components in weight space


• Active subspace (Jantre et al., 2024):

• Compute principal components of the loss 

function gradient with respect to weights 
(sampled over a prior distribution)

Figure 1: Top: Compared to the full Bayesian posterior of a 97-parameter neural network (left) on a univariate regression
problem, reduction to a 20-dimensional active subspace has little effect on posterior uncertainty quantification (center).
Reduction of a much larger 2209-parameter network requires only a slightly larger 60-parameter active subspace (right).
Bottom: Our active subspace reduction (left) can represent uncertainty better than the PCA SGD subspace inference
method of [62] (right), which is overconfident in this example. The Blue line represents the true function.

Figure 2: Strong eigenvalue decay suggests an active subspace of $ (10)–$ (100) dimensions is sufficient to explain
most of the variability in neural network output for weight space dimensionalities spanning orders of magnitude.

B: Reducing the number of uncertain neural network parameters

As an alternative, or prior, to AS/LIS weight space reduction, we will also consider various methods to
reduce the number of uncertain parameters, by holding some of them fixed or setting them to zero altogether.

One approach that can be surprisingly effective for its simplicity is the Bayesian last layer (BLL)
formulation [73, 116], which reduces the number of uncertain parameters by fixing all weights except those
in the final layer to point estimates, under the premise that earlier layers are performing feature extraction
and later layers are performing the regression task. To allow for the possibility of some uncertainty in
earlier layers without an intractably large parameter space, we apply sparse inference on the prior layers in
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<100-D parameter space 
captures most of the uncertainty 
in a neural network’s predictions  

20,993-parameter NN weight space 20-dimensional active subspace

∗90

Figure 4: Compared to the full Bayesian posterior from Hamiltonian Monte Carlo of a 20,993-parameter neural network
(left) on a univariate regression problem, reduction of its weights to a 20-dimensional active subspace (right) results
in nearly identical quality posterior predictive uncertainty, despite a > 1000⇥ reduction in dimensionality.

dynamics from real-world measurements, most physically plausible dynamical systems will be representable
in the same basis, namely the measurement data’s basis. (If our goal is to extrapolate the calibrated dynamics
to very different initial or boundary conditions, we will require additional simulation ensembles to construct
a basis large enough to encompass all those solutions; we can also make use of basis adaptation/enrichment
methods as in Sec. 3.4.1).
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Figure 5: We will synthetically construct stencil states
for the purposes of system identification, which will
be simulated by the forward model to generate output
labels for the stencil operator.

For (2), system identification, it is not necessary
to actually solve the PDE, which generates highly
correlated and redundant stencil states over its solution
trajectory. We only need to evaluate the simulation’s
stencil operator on a collection of stencil states to
generate the training data. One way to do this is to
initialize the PDE solver’s spatial domain with random
non-overlapping stencils that are uniformly space-filling
in the state space, and advance the solver a single
timestep to determine the next state of each stencil
(Fig. 5); we can repeat this process for new batches
of designed states. This has two advantages over
sampling from a “natural” PDE solution (e.g., the
ergodic distribution): (a) the states can be sampled
independently, instead of correlated, which increases
the effective sample size; and (b) this strategy oversamples the tails of the distribution, or “corners” of state
space, meaning that the ML function approximation of the stencil operator is more likely to interpolate into
physically meaningful regions of state space, rather than extrapolate. It is also possible to sample a mixture
of uniformly- and ergodically-sampled states, to balance a desire between sampling space-filling designs and
dynamically-common states [57].

Instead of sampling stencil states completely at random (iid distribution), we acknowledge that most
physically realistic stencil states have smooth spatial gradients across the stencil domain. We will therefore
construct spatially-correlated stencil distributions. One approach is to train a generative model, such as a
variational autoencoder (VAE), on stencil states sampled from few-shot solution trajectories. We can then
sample the generative model’s latent space in a space-filling way to obtain the benefits of space-filling designs
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Jantre et al. (2024)



Functional subspace reduction
Function recovery 

(slices through the 2D function) 

Jantre et al.

• Toy example: linear function 

• Recover the correct function, assuming it’s linear

• Note that we never observe this function 

directly, just the PDE solutions

gML(v1, v2) = 10(v1 − v2)



Functional subspace reduction
Predictive uncertainty 

(selected grid cells)

Jantre et al.

• Toy example: linear function 

• Recover the correct function, assuming it’s linear

• Note that we never observe this function 

directly, just the PDE solutions

• Predictive uncertainties also well calibrated

• Like the Cahn-Hilliard neural PDE, we can run the 

learned hybrid model for new initial or boundary 
conditions without having trained on them

gML(v1, v2) = 10(v1 − v2)



Functional subspace reduction

Jantre et al.

• Toy example: linear function 

• Now try full nonlinear NN function approximation

• Recovers linear function for the states that are 

highly sampled by the hybrid model

• Reverts to constant prior outside those states

• … but ok for prediction when solutions live in 

that region of state space

• → Data augmentation and active learning

• Force model to sample where NN is uncertain

gML(v1, v2) = 10(v1 − v2)



Functional subspace reduction

Jantre et al.

• Nonlinear function 


• 


• 


• NN nonlinear function approximation

• Recovers sinusoidal-linear function for states 

sampled by the hybrid model

• Unconstrained outside those states

• … but ok for prediction when solutions live in 

that region of state space

• → Data augmentation and active learning

• Force model to sample where NN is uncertain

gML(v1, v2) = v1 − v3
1 − v2 − 0.005

∂v1/∂t = D1 ∇2v1 + gML(v1, v2)
∂v2/∂t = D2 ∇2v2 + 10(v1 − v2)



Model reduction to accelerate functional UQ 
• Digital twins (e.g., PDE solvers) can be very 

computationally expensive

• Even if the space of uncertainties is reduced, it might 

still be computationally infeasible to sample them

• Idea: Automatically construct a fast surrogate model 

for any functional term in the digital twin

• Approach: Principal orthogonal decomposition (POD) 

Galerkin projection reduced order model (ROM)

• Projects dynamics onto reduced state subspace 

by modal decomposition of solution data

• Converts the equations of the full order model into 

a smaller set of equations that are faster to solve

du/dt = N(u)
⟹ dũ/dt = PN(Lũ) ≡ Ñ(ũ)

ũ = Pu, u = Lũ

original system

reduced system

projection lifting

O
ⅹ

Figure 2: Our ML-ROM recovered a posterior distribution (right) over a 2-parameter family of PDE governing equations
representing variations of the 2D rotating shallow water equations [26]. This space of model structures was constrained
by coarse-grained measurement data from the true system (left). This was achieved through “one-shot” learning:
only a single RSWE simulation, using incorrect dynamics (�), was used for ML-ROM basis and prior construction.
Nevertheless, the true dynamics (⇥) were recovered within the posterior via ML-ROM Monte Carlo sampling.

limited to finite-difference spatial discretization or Euler time discretization schemes, but we will refer to it
this way for conceptual simplicity.)

In Section 1, we spoke of identifying the RHS f of the continuum PDE, but in practice we will identify
the discretized operator implemented in the numerical solver, which is the stencil operator F. In simple
PDEs, the stencil operator is analytically known, but in DOE simulation codes where it may contain complex
parameterization schemes — potentially including “if” statements or “switches”, empirical regressions,
or other complicated code flow — there is no analytically tractable equation. This has prevented the
application of ROMs to many complex problems, since ROMs are normally intrusive, requiring access to the
PDE governing equations. We therefore want to learn a statistical representation of the operator from PDE
solution data, a process known as system identification. This will render model order reduction non-intrusive.

In compact form: the stencil operator – F essentially describes the mapping of the stencil state
(uC

8�1, u
C
8 , u

C
8+1) centered on a grid cell 8 at time C, to the next state uC

8 . We will train a machine learning model
F̂\ with parameters \ to approximate this function. A forward simulation can contain an extremely large
number of examples of such mappings to use as training data: the E3SM climate model at 25 km resolution,
for example, may have$ (106) grid cells simulated over$ (106) time steps, or roughly 1012 stencil evaluations.
(This particular model uses spectral elements rather than the finite difference approximations discussed here
for expository purposes, but the general point remains.)

Various ML techniques can be used to approximate the stencil operator F̂(·) (Fig. 3). A natural choice
would seem to be sparse identification of nonlinear dynamics, or SINDy [14], which assumes the operator is
a linear combination of some dictionary of possible terms including differential operators. We will explore
this approach — as well as other equation-learner approaches [84] — which we successfully applied to
system identification and model reduction in previous work [26], as it works well in simple or “clean”
PDE systems (those without complex parameterizations, closure schemes, etc.) However, our ultimate aim
is to apply our ML-ROM to complex DOE production codes, where sub-grid parameterization schemes
alone can exceed 104 lines of code and may be considered (sub)models in their own right. In this setting,
which has also proven a barrier to classical intrusive ROM methods that require access to the governing
equations, the full RHS is unlikely to be within the span of any reasonably sized SINDy basis. For this
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“Few-shot learning”: Construct a ROM from a single training 
example, and predict the physics of a different, never-seen system

du/dt = N(u) ⟹ dũ/dt = PN(Lũ) ≡ Ñ(ũ)ũ = Pu, u = Lũ
original system reduced systemprojection lifting

O
ⅹ

Figure 2: Our ML-ROM recovered a posterior distribution (right) over a 2-parameter family of PDE governing equations
representing variations of the 2D rotating shallow water equations [26]. This space of model structures was constrained
by coarse-grained measurement data from the true system (left). This was achieved through “one-shot” learning:
only a single RSWE simulation, using incorrect dynamics (�), was used for ML-ROM basis and prior construction.
Nevertheless, the true dynamics (⇥) were recovered within the posterior via ML-ROM Monte Carlo sampling.
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system identification and model reduction in previous work [26], as it works well in simple or “clean”
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alone can exceed 104 lines of code and may be considered (sub)models in their own right. In this setting,
which has also proven a barrier to classical intrusive ROM methods that require access to the governing
equations, the full RHS is unlikely to be within the span of any reasonably sized SINDy basis. For this
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2D rotating shallow water 
equations: observed state

Uncertainty over a 2-D parameterized 
function space of equations

The ROM was trained with 
data from this equation

But the observations came 
from this equation … and we 
recover the true equations in 

our posterior distributionDeGennaro et al. (2019)



Future directions
• Foundational mathematical research on how to construct surrogates of high-

dimensional systems and functional uncertainty spaces from small training sets

• Streaming / online / realtime updating of uncertainties

• Improved sample design and active learning to generate optimal training data 

• Not discussed here: Decisions! 
• Closing the DT loop, automation

• Experimental design: explore (reduce uncertainty) vs. exploit (optimize system)

• Bayesian decision theory, mean objective cost of uncertainty, Bayesian 

optimization, dynamic programming/tree search, …

• Other decision problems

• Control (e.g., accelerators), design (e.g., of materials, molecules, facilities), 

planning (climate resilience, urban systems, Big Science campaigns)



Conclusions
• The measure-act-control loop of DTs has focused attention on ingesting state 

information about the system (e.g. realtime data assimilation)

• However, it is also important to improve the DT’s representation of the system’s 

governing dynamics (parameter estimation, system identification, etc.)

• This is an enormous computational challenge (high-dimensional input spaces)

• Use reduced models and system identification to avoid need for large training sets

• Approaches:

• Multifidelity hierarchy of digital twins

• System identification (learning unknown dynamics / missing processes)

• Function-space uncertainty quantification and subspace reduction

• Hybrid physics-ML models

• Data augmentation and active learning

• Automated model reduction


