Uncertainty in digital twins from
Imperfect system information

Nathan Urban

nhurban@bnl.gov
Applied Mathematics, Computing & Data Sciences

Brookhaven National Laboratory
September 17, 2024

. > o X
. . OO
4 > . ;
o R ‘.l A4 ‘]
o () o
; ..0) ..%.’ .:J:_(-*
- o 0o o laren |
v }:”. B P50,
200, 1 ,
” : O 0P, :
4 i i : o, CR it I
: 3 . > ¢ % :
| " x 29 7\ ; J :
R o %0 20000950070, 0 0% 0" e i
A . e O . : AL N a , !
/ > " Ay
ot

S N\ N [\ S TR

What is a digital twin?

* For the purposes of this talk:
* A predictive computational model of a specific, real-world system
 Can be physical simulation, Al, anything else
* |ncorporates decision making (control, planning, design optimization, ...)

 Automatically “ingests” data about the system and updates its
representation of reality, following these decisions

e Learn — Predict = Act = Learn — ...
 Beyond this, | am not going to open the terminology can of worms!

What is a predictive digital twin, computationally?

A mechanistic (“physical’) simulation

* Constructed to emulate a specific system

* |nitialized with data (state estimation), or “tuned” to data (parameter estimation)
* A data-driven model (usually statistical/machine learning)

 Data as inputs to a prediction (“state estimation”), or trained to data
(“parameter estimation”)

 Both of these
A ML model that uses both simulated and real-world data
A ML model of data from a simulation that has been tuned to the real world
A mechanistic simulation that contains Al components or submodels

What is a predictive digital twin, computationally?

A mechanistic (“physical’) simulation

* Constructed to emulate a specific system

* |nitialized with data (state estimation), or “tuned” to data (parameter estimation)
* A data-driven model (usually statistical/machine learning)

e Data as inputs to a prediction (“state estimation”), or trained to data
(“parameter estimation”)

e Both of these
e A ML model that uses both simulated and real-world data
e A ML model of data from a simulation that has been tuned to the real world

A mechanistic simulation that contains Al components or submodels

Uncertainty in digital twins

Much uncertainty quantification (UQ) for DTs focuses on state estimation: the DT
updates its state representation with data from the measured system

But digital twins are not identical twins: they imperfectly model the true system
“All models are wrong, but some are useful” —-G. Box

Uncertainty in digital twins

Much uncertainty quantification (UQ) for DTs focuses on state estimation: the DT
updates its state representation with data from the measured system

But digital twins are not identical twins: they imperfectly model the true system
“All models are wrong, but some are useful” -G. Box; “But they’re still wrong” —-me

Uncertainty in digital twins

Much uncertainty quantification (UQ) for DTs focuses on state estimation: the DT
updates its state representation with data from the measured system

But digital twins are not identical twins: they imperfectly model the true system

“All models are wrong, but some are useful” —-G. Box; “But they’re still wrong” —me
e | earn and quantify errors in their representation of the system dynamics

* This could be parameter estimation, or system identification, or equation learning
Data driven-models:

* Pro: based on the observed, real world

 Con: hard to make predictions outside the scope of the observed data

Physical simulation:

 Pro: can make predictions under new, unseen conditions (extrapolate)
* Con: some physics is unknown/intractable, simplified theory approximations

Parameter uncertainty in simulations

 Example: nanomaterial self-assembly
* Phase separation dynamics in block copolymer systems
* Applications to batteries, photovoltaics, etc.
* “Digital twin” is a simulation of the binary nonlocal Cahn-Hilliard equation

 Partial differential equation (PDE) system: dc/dt = V?(—€e*V?c) + V*(c® — ¢) — 6(c — ¢)
 Bayesian parameter estimation: probabilistically fit the PDE coefficients to data

.f(' E— ‘),7") -

DT parameter
estimates .=

A. DeGennaro G ™%

Data

al P tnx.xxll

A 1 'S

[(b) Individual parameter posterior distributic

K. Yager

Decisions
* Tradeoffs between DT accuracy and speed —

. _ Experiment il
* Molecular dynamics (MD): gold standard but slow 3 Doerk et al. (2023
(thousands of hours) I Jo =008 1
 Cahn-Hilliard PDE (CH): captures coarse-scale

dynamics (fraction of an hour) MD K. Yager

 ML.: fraction of a second, but little training data i
* Build a multifidelity hierarchy of twins 2l

+ Real world = MD + MD error =

e MD = CH(parameters) + CH error CH

» CH = ML(parameters) + ML error A. DeGennaro
* Uncertainty in parameters and errors at each level
* Use in a DT decision loop: calibrate — predict — "

select next experiment — calibrate :

(b) GP mean. (c) GP std dev.

Learning a simulation-based digital twin

We know the Cahn-Hilliard PDE describes
structure formation in a simple set of cases

We don’t know what effective PDE describes the
coarse-grained dynamics of harder cases

 \We may be able to derive it by hand, but this is
laborious for each new system

e Can we learn the PDE? (dc/odt = ?7)
Treat right hand side (RHS) as unknown function

PDE stencil operator

* cell neighbor states — next cell state

 Insert neural net into PDE solver uit’ = N(ut, uist, Ui-1t)

Once equations have been learned, can run the
twin at unseen initial or boundary conditions (unlike
ML approaches that train on input/output pairs)

CH solver

ol T e
T i T s el B X
i "Jl“.& (s el ‘v.'i‘"l:*jli: - 'F""'
B e O T e e
--'f.g-‘ it R R G

120 MR sl TR o
E’; e ;l'ﬁ.- P I R ST e
0 20 40 60 80 100 120

0NN Emulator State - Timestep 1001
e b L L

A e (S
~ " ".‘- ’ .I . 0.3010

' el N 7

i o (TR 1‘ |

A\ AT LSRR

'\ - . W

.
av. - .,
S D (L
F e ;,: l(-.‘.".l ":
=

Neural PDE

CH Solver State - Timestep 1
<

-

-
)
e

O Py s et O T P L e,
L et JE **&x.f kL
g L L SO LT

0.304

gt =
o F0.302
AR

Pt . - s
|' . "““i ". I.- ark Flﬂl
P R Tt 2
ok P T
e = Pyt *
b AL S TS
B - v .
.:‘.'. T = g o AT ot
el 1= ' gt o e
Wy AN e i Ty
T ey AR EOLR, o W o e ar
St e L Ll R ek
B P T L A P Mo s
3 s el " Fir . wanm e L
e e o T I e T e g 0.298
s b FASEE 53 LG By e B ¢ T
AT LR -,.’. s T A l;‘ e '_1-.
B R T e o ey e ST
M A v - - - o
I ilqu T}".F*'l 1 e iy l:'.,l'. s 2 '_.“-_. - ‘ —
&1 :,ls.: AE ';- J| ::‘. Ao [.}. i-']l.' v' 1 i
B A AN G Iy St A e
\
LR T g ¥ g e d+ Lt Pk L

o CH Solver State - Timestep 1001

- - N, = 'ﬁ . -

l.;"“ " “..‘k i g N
L

.- - ‘?...‘ “‘ -
g (R IR
40 \u .‘: a¥g

- ‘ a ¥
o

100-_-_1’-\1.‘ .n;‘:'; ‘-ﬁ

*

’,
w "‘b -s - ‘.
o SO e am !

Q 20 40 60 80 100 120

gH Solv;LState - Timestep 9501
0 - ‘-'v-" A
. ’ .\\.:".‘
20 4 -
. . .»l“ ’
-‘\ Jd v
’ , - -
= AP
1 - ‘.
sofF * - "
cme """ - f, :j
100 - .'. f..l.‘ - ‘.
.“"'. - (' i
120 . : - '.‘...

4] 20 40

)
40;‘

60 80 100 120

Jantre et al.

r '0.2990

0.300

0.3010
-0.3005
r0.3000

r0.2995

i(] 2990

0.3010

0.3005

F0.3000

0.2995

Inconvenient truth of modeling: approximations

* Climate example: models differ mostly due to g R 7

their representations of cloud dynamics

 Clouds are approximated (too small to simulate)

 Many choices involved Iin approximations:
 numerical time and space discretization schemes
e closure models
e other unresolved sub-grid approximations
* choice of processes to include

Jun 02, 2005

NASA GEOS-5 global
cloud resolving model
(1.5 km resolution)

eeeeeeeeeee

* |n a climate model, ~10% of the code is the
PDEs you’re solving, and ~90% is
approximations to all the physics you’re not
solving from first principles

DOE E3SM global climate model

e True for many complex systems (25 km resolution)

Hybrid physics+ML digital twins

 Can we build a “hybrid” digital twin that makes use of physics we know and trust,
but learns physics we don’t know from data”

 Example: partial differential equation system

o ou/ot = fppp(ulx, 1);p) + gy (ulx, 1); w)
* f(-) embodies “known physics” equations (e.g. heat or wave equations ...)
* g(-) embodies “unknown physics” that can be learned from data
* (Can represent correction terms, closure schemes, missing processes, ...

* The uncertainties are now functional (what should go on the PDE’s right hand side?),
rather than parametric

 Formally an infinite-dimensional space
 Can parameterize it with neural net weights, but still high-dimensional

Hybrid physics+ML digital twins

o “Offline learning”: have measurements of the unknown physics, and we fit a function to it

* “Online learning”: don’t know what the function should look like, but we can guess a
functional form, run the hybrid model, and see what it predicts

* Differentiable programming: backpropagate DT prediction errors through both ML
component and the simulation solver (adjoint model)

Learning an artificial viscosity Fitting a climate model by
scheme in shock hydrodynamics backpropagation . .
y y 3.0 | propas Learning unresolved cloud physics
., Shock localized (velocity) s | [moger it in a climate model
t = 0.200
098 ---- aaen L Y Vs sees CULLLELEY, M U
ooal ShockFromt g
091} o
&
@
0.9 H|=== Exact
mem AV added
ngo - Kochkov et al. (2024)
0.601 0.667 0.733 0.799 0.866

X

_05 1 I ! |
1850 1900 1950 2000 2050
Melland et al. (2021) Year

Hybrid physics+ML dlgltal twins

 Example: reaction-diffusion PDE Neural PDE

1 00 T | 1.0

9) 3 ZZZ} | - ZZZZ} | o
e Ovi/O0t=D,V“v,+vi—v’—v,—0.005 o P »-
1 1 1 1 1 2 —0.25\ ‘ -0.25 ‘ :
_ 2 =) _—a ZiZL" e |
. avz/at — Dz V Vz + gML(Vl , Vz) _1::—-1%? 04010:10 -0.5 010 OAO

Can we recover the unknown function g(-) from
solution data, (v(¢), v,())?

 And propagate its uncertainty to predictions?

* How do we handle the high-dimensional
uncertainty space of functions?

Jantre et al. < -.‘ M= <.
Akhare et al. (2023) THe s e s o

Functional subspace reduction

Neural network (NN) weight space is too high-

dimensional to explore uncertainties

* Each function represented by a NN requires
an expensive PDE solve to compute the loss

— Find a low-dimensional parameter subspace
that captures most of the predictive uncertainty

SGD-PCA subspace (Izmailov et al., 2019):

 Record weights visited during stochastic
gradient descent; compute principal
components in weight space

Active subspace (Jantre et al., 2024):

 Compute principal components of the loss

function gradient with respect to weights
(sampled over a prior distribution)

Cumulative variance explained
1.0 |

o
o0

O
o

91-parameter network
2209-parameter network
20993-parameter network

o
I

Fractional variance

<100-D parameter space
captures most of the uncertainty
in a neural network’s predictions

0 100 200 300 400 500
Active subspace dimension

o
N

20-dimensional active subspace

20,993-parameter NN weight space

3 L

0.00 0.25 0.50 0.75 1.00

Jantre et al. (2024)

Functional subspace reduction

» Joy example: linear function g,,, (v, v,) = 10(v; — v,)
 Recover the correct function, assuming it’s linear

e Note that we never observe this function
directly, just the PDE solutions

Function recovery
(slices through the 2D function)

Prediction with v; = —0.5 Prediction with v; = 0 Prediction with v; = 0.5

Jantre et al.

Functional subspace reduction

Toy example: linear function vi.vs) = 10(v, — v Predictive uncertainty
4 P Smr(V1: v2) v) (selected grid cells)

Recover the correct function, assuming it’s linear

e Note that we never observe this function
directly, just the PDE solutions

Predictive uncertainties also well calibrated

Like the Cahn-Hilliard neural PDE, we can run the
learned hybrid model for new initial or boundary
conditions without having trained on them

Jantre et al.

Functional subspace reduction

* Joy example: linear function g,,, (v, v,) = 10(v; — v,)
 Now try full nonlinear NN function approximation

e Recovers linear function for the states that are
highly sampled by the hybrid model

 Reverts to constant prior outside those states

e ... but ok for prediction when solutions live In

that region of state space

ediction

« — Data augmentation and active learning
 Force model to sample where NN Is uncertain

Jantre et al.

Functional subspace reduction

» Nonlinear function g,,, (v, v,) = v; — vi — v, — 0.005

o 0vy/0t = D; Vv + gy (vy, 1)

o Ov,/0t = D, Vv, + 10(v; — v,) _
NN nonlinear function approximation
e Recovers sinusoidal-linear function for states

sampled by the hybrid model

e Unconstrained outside those states

O
or—
o)

o}

e ... but ok for prediction when solutions live In
that region of state space

« — Data augmentation and active learning
 Force model to sample where NN Is uncertain

Jantre et al.

Model reduction to accelerate functional UQ

projection lifting

* Digital twins (e.g., PDE solvers) can be very N o
u = Pu, u=»r,u

computationally expensive

 Even if the space of uncertainties is reduced, it might

still be computationally infeasible to sample them original system

e |dea: Automatically construct a fast surrogate model du/dt = N(u)
for any functional term in the digital twin — dii/dt = PN(Li1) = N(i)
* Approach: Principal orthogonal decomposition (POD) reduced system

0

Galerkin projection reduced order model (ROM) L

100 l0.4

* Projects dynamics onto reduced state subspace °
by modal decomposition of solution data oo o 1
» Converts the equations of the full order model into “F_ g 3

a smaller set of equations that are faster to solve

IOO

50 100

980 02 04 06 08 10 ~1997% ~50 0
X)\1
Observed state Inference over 2-parameter

DeGennaro et al. (2019) family of equations

“Few-shot learning”: Construct a ROM from a single training
example, and predict the physics of a different, never-seen system

projection lifting original system reduced system
u = Pu, u=>r,u du/dt = Nu) = du/dt = PN(Lu) = N(u)
1.0 100 0.4
Uncertainty over a 2-D parameterized
08 function space of equations
50--
0.6
> < 0 0.2
0.4
~50- KR
0.2 I
980 02 04 06 08 1.0 ~190700 ~50 0 50 100
. L Al But the observations came
2D roifatmg shallow water The ROM was trained with from this equation ... and we
equations: observed state data from this equation recover the .

DeGennaro et al. (2019) our posterior distribution

Future directions

Foundational mathematical research on how to construct surrogates of high-
dimensional systems and functional uncertainty spaces from small training sets

Streaming / online / realtime updating of uncertainties

Improved sample design and active learning to generate optimal training data
Not discussed here: Decisions!

e Closing the DT loop, automation

o Experimental design: explore (reduce uncertainty) vs. exploit (optimize system)

 Bayesian decision theory, mean objective cost of uncertainty, Bayesian
optimization, dynamic programming/tree search, ...

e Other decision problems

 Control (e.g., accelerators), design (e.g., of materials, molecules, facilities),
planning (climate resilience, urban systems, Big Science campaigns)

Conclusions

The measure-act-control loop of DTs has focused attention on ingesting state
information about the system (e.g. realtime data assimilation)

However, it Is also important to improve the DT’s representation of the system’s
governing dynamics (parameter estimation, system identification, etc.)

This is an enormous computational challenge (high-dimensional input spaces)
Use reduced models and system identification to avoid need for large training sets
Approaches:

o Multifidelity hierarchy of digital twins

e System identification (learning unknown dynamics / missing processes)
* Function-space uncertainty quantification and subspace reduction
 Hybrid physics-ML models

 Data augmentation and active learning

 Automated model reduction

