Uncertainty in digital twins from imperfect system information

Nathan Urban

nurban@bnl.gov Applied Mathematics, Computing & Data Sciences **Brookhaven National Laboratory** September 17, 2024

- For the purposes of this talk:
 - A predictive computational model of a specific, real-world system
 - Can be physical simulation, AI, anything else
 - Incorporates decision making (control, planning, design optimization, ...)
 - Automatically "ingests" data about the system and updates its representation of reality, following these decisions
 - Learn \rightarrow Predict \rightarrow Act \rightarrow Learn \rightarrow ...
- Beyond this, I am not going to open the terminology can of worms!

What is a digital twin?

What is a predictive digital twin, computationally?

- A mechanistic ("physical") simulation
 - Constructed to emulate a specific system
 - Initialized with data (state estimation), or "tuned" to data (parameter estimation)
- A data-driven model (usually statistical/machine learning)
 - Data as inputs to a prediction ("state estimation"), or trained to data ("parameter estimation")
- Both of these
 - A ML model that uses both simulated and real-world data
 - A ML model of data from a simulation that has been tuned to the real world
 - A mechanistic simulation that contains AI components or submodels

What is a predictive digital twin, computationally?

- A mechanistic ("physical") simulation
 - Constructed to emulate a specific system
 - Initialized with data (state estimation), or "tuned" to data (parameter estimation)
- A data-driven model (usually statistical/machine learning)
 - Data as inputs to a prediction ("state estimation"), or trained to data ("parameter estimation")
- Both of these
 - A ML model that uses both simulated and real-world data
 - A ML model of data from a simulation that has been tuned to the real world
 - A mechanistic simulation that contains AI components or submodels

Uncertainty in digital twins

- Much uncertainty quantification (UQ) for DTs focuses on state estimation: the DT updates its state representation with data from the measured system
- But digital twins are not identical twins: they imperfectly model the true system
- "All models are wrong, but some are useful" –G. Box

Uncertainty in digital twins

- Much uncertainty quantification (UQ) for DTs focuses on state estimation: the DT updates its state representation with data from the measured system
- But digital twins are not identical twins: they imperfectly model the true system
- "All models are wrong, but some are useful" –G. Box; "But they're still wrong" –me

Uncertainty in digital twins

- Much uncertainty quantification (UQ) for DTs focuses on state estimation: the DT updates its state representation with data from the measured system
- But digital twins are not identical twins: they imperfectly model the true system
- "All models are wrong, but some are useful" –G. Box; "But they're still wrong" –me
 - Learn and quantify errors in their representation of the system dynamics
 - This could be parameter estimation, or system identification, or equation learning
- **Data driven-models:** ightarrow
 - Pro: based on the observed, real world
 - <u>Con</u>: hard to make predictions outside the scope of the observed data
- **Physical simulation:**

 - <u>Pro:</u> can make predictions under new, unseen conditions (extrapolate) • <u>Con</u>: some physics is unknown/intractable, simplified theory approximations

Parameter uncertainty in simulations

- Example: nanomaterial self-assembly
 - Phase separation dynamics in block copolymer systems
 - Applications to batteries, photovoltaics, etc.
- "Digital twin" is a simulation of the binary nonlocal Cahn-Hilliard equation
 - Partial differential equation (PDE) system: $\partial c/\partial t = \nabla^2(-\epsilon^2 \nabla^2 c) + \nabla^2(c^3 c) \sigma(c \bar{c})$
- Bayesian parameter estimation: probabilistically fit the PDE coefficients to data

K. Yager

A probabilistic hierarchy of digital twins

- Tradeoffs between DT accuracy and speed
 - Molecular dynamics (MD): gold standard but slow (thousands of hours)
 - Cahn-Hilliard PDE (CH): captures coarse-scale dynamics (fraction of an hour)
 - ML: fraction of a second, but little training data
- Build a multifidelity hierarchy of twins
 - Real world = MD + MD error
 - MD = CH(parameters) + CH error
 - CH = ML(parameters) + ML error
- Uncertainty in parameters and errors at each level
- Use in a DT decision loop: calibrate \rightarrow predict \rightarrow select next experiment \rightarrow calibrate

(b) GP mean

Learning a simulation-based digital twin

- We know the Cahn-Hilliard PDE describes structure formation in a simple set of cases
- We don't know what effective PDE describes the coarse-grained dynamics of harder cases
 - We may be able to derive it by hand, but this is laborious for each new system
 - Can we learn the PDE? ($\partial c / \partial t = ???$)
- Treat right hand side (RHS) as unknown function
 - cell neighbor states → next cell state
 - Insert neural net into PDE solver
- Once equations have been learned, can <u>run the</u> <u>twin at unseen initial or boundary conditions</u> (unlike ML approaches that train on input/output pairs)

PDE stencil operator

) function

 $\mathbf{u}_{i^{t+1}} = N(\mathbf{u}_{i^{t}}, \mathbf{u}_{i+1}, \mathbf{u}_{i-1})$

CH solver

Jantre et al.

Inconvenient truth of modeling: approximations

- Climate example: models differ mostly due to their representations of cloud dynamics
- Clouds are approximated (too small to simulate)
- Many choices involved in approximations: \bullet
 - numerical time and space discretization schemes ullet
 - closure models ullet
 - other unresolved sub-grid approximations
 - choice of processes to include
- In a climate model, ~10% of the code is the PDEs you're solving, and ~90% is approximations to all the physics you're not solving from first principles
- True for many complex systems

(1.5 km resolution)

DOE E3SM global climate model (25 km resolution)

Hybrid physics+ML digital twins

- Can we build a "hybrid" digital twin that makes use of physics we know and trust, but learns physics we don't know from data?
- Example: partial differential equation system

• $\partial \mathbf{u}/\partial t = f_{PDE}(\mathbf{u}(x,t);p) + g_{ML}(\mathbf{u}(x,t);w)$

- $f(\cdot)$ embodies "known physics" equations (e.g. heat or wave equations ...)
- $g(\cdot)$ embodies "unknown physics" that can be learned from data
 - Can represent correction terms, closure schemes, missing processes, ...
- The uncertainties are now *functional* (what should go on the PDE's right hand side?), rather than *parametric*
 - Formally an infinite-dimensional space
 - Can parameterize it with neural net weights, but still high-dimensional

Hybrid physics+ML digital twins

- "Offline learning": have measurements of the unknown physics, and we fit a function to it
- "Online learning": don't know what the function should look like, but we can guess a functional form, run the hybrid model, and see what it predicts
 - **Differentiable programming:** backpropagate DT prediction errors through both ML component and the simulation solver (adjoint model)

Learning an artificial viscosity scheme in shock hydrodynamics

Fitting a climate model by backpropagation

Hybrid physics+ML digital twins

- Example: reaction-diffusion PDE
 - $\partial v_1 / \partial t = D_1 \nabla^2 v_1 + v_1 v_1^3 v_2 0.005$
 - $\partial v_2 / \partial t = D_2 \nabla^2 v_2 + g_{ML}(v_1, v_2)$
- Can we recover the unknown function $g(\cdot)$ from solution data, $(v_1(t), v_2(t))$?
 - And propagate its uncertainty to predictions?
- How do we handle the high-dimensional uncertainty space of functions?

Neural PDE PDE

Jantre et al. Akhare et al. (2023)

- Neural network (NN) weight space is too highdimensional to explore uncertainties
 - Each function represented by a NN requires an expensive PDE solve to compute the loss
- → Find a low-dimensional parameter subspace that captures most of the predictive uncertainty
- SGD-PCA subspace (Izmailov et al., 2019):
 - Record weights visited during stochastic gradient descent; compute principal components in weight space
- Active subspace (Jantre et al., 2024):
 - Compute principal components of the loss function gradient with respect to weights (sampled over a prior distribution)

- Toy example: linear function $g_{ML}(v_1, v_2) = 10(v_1 v_2)$
- Recover the correct function, assuming it's linear
 - Note that we never observe this function directly, just the PDE solutions
- $= 10(v_1 v_2)$ In the second state of the

Function recovery (slices through the 2D function)

Jantre et al.

- Toy example: linear function $g_{ML}(v_1, v_2) = 10(v_1 v_2)$
- Recover the correct function, assuming it's linear
 - Note that we never observe this function directly, just the PDE solutions
- Predictive uncertainties also well calibrated
- Like the Cahn-Hilliard neural PDE, we can run the learned hybrid model for new initial or boundary conditions without having trained on them

(selected grid cells)

- Toy example: linear function $g_{ML}(v_1, v_2) = 10(v_1 v_2)$
- Now try full nonlinear NN function approximation
 - Recovers linear function for the states that are highly sampled by the hybrid model
 - Reverts to constant prior outside those states
 - ... but ok for prediction when solutions live in that region of state space
- \rightarrow Data augmentation and active learning
 - Force model to sample where NN is uncertain

- = $10(v_1 v_2)$ roximation es that are ose states ons live in
- ning suncertain

- Nonlinear function $g_{ML}(v_1, v_2) = v_1 v_1^3 v_2 0.005$
 - $\partial v_1 / \partial t = D_1 \nabla^2 v_1 + g_{ML}(v_1, v_2)$
 - $\partial v_2 / \partial t = D_2 \nabla^2 v_2 + 10(v_1 v_2)$
- NN nonlinear function approximation
 - Recovers sinusoidal-linear function for states sampled by the hybrid model
 - Unconstrained outside those states
 - ... but ok for prediction when solutions live in that region of state space
 - → Data augmentation and active learning
 - Force model to sample where NN is uncertain

Jantre et al.

Model reduction to accelerate functional UQ

- Digital twins (e.g., PDE solvers) can be very computationally expensive
- Even if the space of uncertainties is reduced, it might still be computationally infeasible to sample them
- Idea: Automatically construct a fast surrogate model for any functional term in the digital twin
- <u>Approach</u>: Principal orthogonal decomposition (POD) Galerkin projection reduced order model (ROM)
 - Projects dynamics onto reduced state subspace by modal decomposition of solution data
 - Converts the <u>equations</u> of the full order model into a smaller set of <u>equations</u> that are faster to solve

lifting projection $\tilde{\mathbf{u}} = P\mathbf{u},$ $\mathbf{u} = L\tilde{\mathbf{u}}$

original system $d\mathbf{u}/dt = N(\mathbf{u})$

 $\implies d\tilde{\mathbf{u}}/dt = PN(L\tilde{\mathbf{u}}) \equiv N(\tilde{\mathbf{u}})$ reduced system

Observed state

Inference over 2-parameter family of equations

DeGennaro et al. (2019)

lifting projection $\tilde{\mathbf{u}} = P\mathbf{u},$ $\mathbf{u} = L\tilde{\mathbf{u}}$

DeGennaro et al. (2019)

But the observations came from this equation ... and we recover the true equations in our posterior distribution

Future directions

- Foundational mathematical research on how to construct surrogates of highdimensional systems and functional uncertainty spaces from small training sets
- Streaming / online / realtime updating of uncertainties
- Improved sample design and active learning to generate optimal training data
- Not discussed here: Decisions!
 - Closing the DT loop, automation
 - Experimental design: explore (reduce uncertainty) vs. exploit (optimize system) Bayesian decision theory, mean objective cost of uncertainty, Bayesian optimization, dynamic programming/tree search, ...
 - Other decision problems
 - Control (e.g., accelerators), design (e.g., of materials, molecules, facilities), planning (climate resilience, urban systems, Big Science campaigns)

Conclusions

- The measure-act-control loop of DTs has focused attention on ingesting state information about the system (e.g. realtime data assimilation)
- However, it is also important to improve the DT's representation of the system's governing dynamics (parameter estimation, system identification, etc.)
- This is an enormous computational challenge (high-dimensional input spaces)
- Use reduced models and system identification to avoid need for large training sets
- <u>Approaches:</u>
 - Multifidelity hierarchy of digital twins
 - System identification (learning unknown dynamics / missing processes)
 - Function-space uncertainty quantification and subspace reduction
 - Hybrid physics-ML models
 - Data augmentation and active learning \bullet
 - Automated model reduction