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Digital twin definition
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“A Digital Twin is a set of virtual information constructs that mimics the structure, context, and 

behavior of an individual/unique physical asset, is dynamically updated with data from its physical 

twin throughout its lifecycle and informs decisions that realize value.”

- AIAA Institute Position Paper, 2020

“A digital twin is a set of virtual information constructs that mimics the 

structure, context, and behavior of a natural, engineered, or social system (or 

system-of-systems), is dynamically updated with data from its physical twin, has a 

predictive capability, and informs decisions that realize value. 

The bidirectional interaction between the virtual and the physical is central to the 

digital twin.”

- NASEM report, 2023

National Academies of Sciences, Engineering, and Medicine, 2023. Foundational Research Gaps and Future Directions for 

Digital Twins



Digital twins
- figure from “National Academies of Sciences, Engineering, and Medicine, 
2023. Foundational Research Gaps and Future Directions for Digital Twins”
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Building trust in digital twins is key for safety 

critical applications
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A digital twin should be able to 

• provide interpretable decisions through explainable underlying models 
with uncertain parameters

• quantify the effects of multiple sources of uncertainty and account for 
risk in decision-making

• be computable on actionable (possibly real-time) time scales

and ensure security, address ethical concerns, …
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Reward
Quantifies overall patient outcomes 

e.g., treatment efficacy, toxicity

Control inputs
Therapy decisions that influence the 

patient condition

e.g., MRI studies, treatment regimens

Physical State
State of the patient

e.g., anatomy, physiological state

Quantities of Interest
Quantities for monitoring the patient, 

estimated via model outputs

e.g., tumor cell count, time to

progression, tumor shape

Digital State
Configuration of the computational

models comprising the digital twin

e.g., mechanistic model parameters,

tumor dynamics

MATHEMATICAL ABSTRACTION 
of a cancer patient-twin system

Observational data
Available information describing the 

state of the patient

e.g., tumor size, cell density, perfusion, 

vasculature, tumor metabolism

Digital

Physical

Chaudhuri, A, et al. “Predictive Digital Twin for Optimizing Patient-Specific Radiotherapy Regimens under Uncertainty in High-Grade Gliomas.” Frontiers in Artificial 

Intelligence 6: 1222612, 2023.

Joint work between the Willcox Research Group and the 

Center for Computational Oncology at the Oden Institute



Interpretable decisions 
are made possible through explainable models

• We achieve interpretability by placing biology/physics-based models at the core of 

the digital twin.

– Choice of computational models offers different levels of complexity and fidelity.

• Explainable surrogate models, such as projection-based reduced order models 

play a critical role in reducing computational effort and retain a clear interpretable 

connection to the underlying physics-based models.
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𝑑𝑁(𝑡)

𝑑𝑡
= 𝜌𝑁 𝑡 1 −

𝑁 𝑡

𝐾
;  𝑁 0 = 𝑁initial 𝑆(𝑢𝑡) = 𝑆Cexp −𝛼𝑢𝑡 −

𝛼

10
𝑢𝑡

2 𝑁post−treatment = 𝑆(𝑢𝑡)𝑁pre−treatment

governing equation
radiotherapy treatment effect: 

surviving fraction 
discrete treatment events

Logistic tumor growth model representing tumor dynamics and treatment



Uncertainty quantification (UQ)

Continuous assessment of uncertainty in model predictions and decisions is 

necessary to build appropriate confidence in the digital twins.

We develop predictive digital twins based on probabilistic graphical models to 

encode uncertainty.

Kapteyn, MG, Pretorius, JVR, and Willcox, KE. “A probabilistic graphical model foundation for enabling predictive digital 

twins at scale.” Nature Computational Science 1.5 (2021): 337-347.

Chaudhuri, A, et al. “Predictive Digital Twin for Optimizing Patient-Specific Radiotherapy Regimens under Uncertainty in 

High-Grade Gliomas.” Frontiers in Artificial Intelligence 6: 1222612.
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Creating and evolving 
a cancer patient predictive digital twin

Predictive digital twins consist of three phases to account for uncertainty throughout a patient’s treatment

9

Baseline 
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twin used for 
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Dynamic predictive 

digital twin
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physiology Calibrate radiation 

response

Pre-RT image

Mid-RT image

Post-surgery image

Post-RT imageCalibrate initial 

conditions

Baseline 

model

Calibrated digital 

twin used for 

patient-specific 

optimized therapy

Dynamic estimation for 

monitoring disease 

progression

Dynamic predictive 

digital twin

Calibrate tumor 

physiology Calibrate radiation 

response

Pre-RT image

Mid-RT image

Post-surgery image
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conditions

Calibration: infer patient-specific parameter 

distributions for the digital twin from observed data

Chaudhuri, Anirban, et al. “Predictive Digital Twin for Optimizing Patient-Specific Radiotherapy Regimens under Uncertainty in High-Grade Gliomas.” Frontiers in Artificial 

Intelligence 6: 1222612, 2023.



Monitoring: anticipate tumor progression by propagating uncertainty forward

Creating and evolving 
a cancer patient predictive digital twin

Predictive digital twins consist of three phases to account for uncertainty throughout a patient’s treatment
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Chaudhuri, Anirban, et al. “Predictive Digital Twin for Optimizing Patient-Specific Radiotherapy Regimens under Uncertainty in High-Grade Gliomas.” Frontiers in Artificial 

Intelligence 6: 1222612, 2023.



Optimize therapy: use predictive digital twin to choose 

optimal patient-specific treatment plan under uncertainty

Monitoring: anticipate tumor progression by propagating uncertainty forward

Creating and evolving 
a cancer patient predictive digital twin

Predictive digital twins consist of three phases to account for uncertainty throughout a patient’s treatment
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Chaudhuri, Anirban, et al. “Predictive Digital Twin for Optimizing Patient-Specific Radiotherapy Regimens under Uncertainty in High-Grade Gliomas.” Frontiers in Artificial 

Intelligence 6: 1222612, 2023.



Quantifying uncertainty in mechanistic tumor growth model 

representing tumor dynamics and treatment

Patient-specific model parameters

𝑁(𝑡): tumor cell count

𝜌: proliferation rate

𝐾: carrying capacity

𝑁initial: initial tumor burden

𝛼: radiosensitivity parameter

𝑆C: chemotherapy effect

𝑢𝑡: dose of radiotherapy at time 𝑡

𝑑𝑁(𝑡)

𝑑𝑡
= 𝜌𝑁 𝑡 1 −

𝑁 𝑡

𝐾
;  𝑁 0 = 𝑁initial

𝑆(𝑢𝑡) = 𝑆Cexp −𝛼𝑢𝑡 −
𝛼

10
𝑢𝑡

2
𝑁post−treatment = 𝑆(𝑢𝑡)𝑁pre−treatment

governing equation radiotherapy treatment effect: 

surviving fraction 

discrete treatment events
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Probabilistic parameters use 

priors derived from clinical data 

of a population of patients

Patient-specific 

posterior distributions



Patient-specific tumor modeling
via Bayesian model calibration

Model parameters to be inferred: 
𝜃 ≔ {𝜌, 𝐾, 𝛼, 𝑁initial}

• Priors obtained from clinical data of a population 
of patients

We use a Bayesian formulation that 
combines prior knowledge with observed 
data to quantify uncertainty in the patient-
specific model parameters.
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Patient priors from clinical data of a population of patients
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Patient 1: Calibrated digital twin
----------------------
Patient 1 true parameters:
----------------------
Proliferation Rate: 1.14e-01
Carrying Capacity: 1.17e+11
Radiosensitivity parameter: 1.05e-03
Initial Tumor Burden: 1.54e+10

True parameters
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Patient 2: Calibrated digital twin
----------------------
Patient 2 true parameters:
----------------------
Proliferation Rate: 1.09e-01
Carrying Capacity: 1.09e+11
Radiosensitivity parameter: 4.58e-02
Initial Tumor Burden: 2.60e+10
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Patient 3: Calibrated digital twin
----------------------
Patient 3 true parameters:
----------------------
Proliferation Rate: 2.25e-01
Carrying Capacity: 1.40e+11
Radiosensitivity parameter: 3.90e-02
Initial Tumor Burden: 2.62e+10
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Data handling and storage issues
when dealing with uncertainty

• Large amounts of information might need to be stored depending on the digital twin 

architecture, types of methods used to calibrate uncertain parameters, and the 

underlying model parameterization.

• “Fit-for-purpose” UQ when architecting a digital twin requires careful consideration of

• accuracy of quantified uncertainty

• computational efficiency of the UQ method

• computational model

• data storage capacity

• data handling efficiency
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Risk-informed optimal decisions 
can be certifiable depending on the risk measure

Two notions of certifiability in risk-based decisions:
• data-informed conservativeness: decisions should be risk-averse against near-failure and 

catastrophic failure events 

(taking into account magnitude of failure)

• optimization convergence and efficiency: decisions using risk measure that preserve convexity 

of underlying functions can be certifiably optimal

Superquantile is a risk measure that satisfy these certifiability conditions.

Chaudhuri, A., Kramer, B., Norton, M., Royset, J.O. and Willcox, K., 2022. Certifiable risk-based engineering 

design optimization. AIAA Journal, 60(2), pp.551-565.
19



Risk measure (    ): 𝛼-superquantile

Patient-specific treatment plans
Multi-objective optimization under uncertainty (OUU)

Risk-aware clinical decision-making: 

minimize risk and dose with constraint 

on total dose

Quantity of interest (𝑀(𝒖, 𝜃)): time to progression 

(TTP) beyond a threshold cell count 𝑁th
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Leads to a suite of optimal treatment regimens with varying levels of trade-offs between competing 
clinical objectives: (i) maximizing tumor control and (ii) minimizing toxicity from radiotherapy 

Control action (𝒖 ∈ 𝒰 ⊆ ℝ+
𝑤)

Radiotherapy dose; carried out

5 days/week over 𝑤 = 5 treatment weeks



Patient-specific treatment plans with trade-off between 

tumor control and toxicity

Patient 1 Patient 2 Patient 3
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Suite of patient-specific treatment plans allows flexibility to consider the patient's and the treating 
physician's preferences



Time-to-progression distributions

Patient 2

Patient 1

Patient 3
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40 Gy 80 Gy60 Gy
allowable 

dose

70 Gy50 Gy 100 Gy



Optimal treatment regimen options with similar tumor 
control as standard-of-care (SOC), but reduced RT dose 
to mitigate toxicity effects
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Making optimal decisions at the individual level improves 
survivability across the cohort of patients

Estimator of survival probability 

from lifetime data (probability 

that life is longer than time 𝑡)

መ𝑆 𝑡 = ෑ

𝑖:𝑡𝑖≤𝑡

1 −
𝑑𝑖

𝑛𝑖

𝑡𝑖: time at which at least one event 

has happened

𝑑𝑖: number of events at time 𝑡𝑖

𝑛𝑖: number of survivors up to time 𝑡𝑖

Plotted based on

𝛼-superquantile values
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Computability in actionable time-scales 
makes a digital twin usable in practice

• Scalable methods are required for 

digital twins.

• Surrogate models play a key role: 

projection-based reduced order 

models, Gaussian process

• Models spanning range of fidelities 

and computational cost can reduce 

the overall computational effort 

associated with decision-making 

through digital twins.
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Human-twin interaction

• Need to effectively communicate the uncertainty in predictions and decisions 

to the clinician

• Interpretable decisions are necessary for users to trust the digital twin

Predictive digital twins as a step towards risk-aware, personalized medicine 

requires significant efforts towards addressing clinician-twin interactions.
• Making digital twin findings accessible to the clinicians

• Clinical adoption will depend on understanding and trust in digital twin decisions 

under uncertainty

• Handling and transmitting patient data from physical to digital twin

• Privacy and security issues

26



Navigating uncertainty in digital twins 
to build trust through

- interpretability of decisions based on explainable models with 

uncertain parameters

- uncertainty quantification and risk-informed decision-making 

- ensuring computability in actionable time-scales

a n i r b a n c . c o m
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https://www.anirbanc.com/
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