Pion and Kaon Form Factors at the EIC

Love Preet¹, G. M. Huber¹, S. J. D. Kay^{1,2}

¹University of Regina, ²University of York

Reconstruction Group Meeting 02/07/2024

ePIC simulations for exclusive reactions

- Feasibility studies of Deep Exclusive Meson Production (DEMP) reactions through ePIC simulations.
- Utilized DEMPgen to generate files for both reactions (π^+ , K^+), passed π^+ files through the latest ePIC simulations.
- Begin with π^+ electroproduction reaction.

$$e + p \rightarrow e^{'} + \pi^+ + n$$

- Indirectly use the "pion cloud" of the proton via the $p(e,e' \pi^+ n)$ process.
- Identification involves reconstructing all final state particles.

Why are these studies important?

- Emergence of hadronic mass generation is directly linked to the internal structure of the constituents (π^{\pm}, K^{\pm}) .
 - Can examine this internal structure by looking at quantities like the form factor.
 - Form factor describes the spatial distribution of partons within a hadron.
- Comparing pion (π^{\pm}) and kaon (K^{\pm}) form factors (F_{π}, F_{K}) provides unique information on mass generation mechanisms.
- One of the ways to measure the form factor is through Deep Exclusive Meson Production (DEMP) reactions at EIC.

- Simulated 2200k events for 5(e) on 41(p) GeV collisions.
- e', π^+ hits the central detector, n hits far-forward detectors (mainly ZDC).

• Simulated 2200k events for 5(e) on 41(p) GeV collisions.

e' rec θ vs P

• e', π^+ hits the central detector, n hits far-forward detectors (mainly ZDC).

Reconstruction efficiency for e', π^+ drops significantly compared to January simulated files.

Using <u>ReconstructedChargedParticles</u> with a cut on PDG]

- Central detector algorithm misidentifies (~50 %) e' as π^- and π^+ as e^{+'}.
- Reduction in identification efficiency, but not in detection efficiency.

Using <u>ReconstructedChargedParticles</u> with a cut on negative PDG]

Resolved by placing a cut on the momentum-z component and the charge. •

e' & π^+ rec p₂ Distribution

Using ReconstructedChargedParticles with a cut on mom-z and charge]

• Resolved by placing a cut on the momentum-z component and the charge.

Using <u>ReconstructedChargedParticles</u> with a cut on mom-z and charge]

- PID lookup tables are having trouble identifying particles.
- Particles are going into different regions of the central detector.
- Using momentum-z component and the charge information to reconstruct particles.

Thank you !

EIC-Canada

This research was supported by the Natural Sciences and Engineering Research Council of Canada (NSERC), FRN: SAPPJ-2023-00041

& UK Research and Innovation: Science and Technology Facilities council (UKRI:STFC) grant ST/W004852/1

Email : navisaharan3@gmail.com

January simulations results

• For 5(e) on 100(p) GeV collisions from ePIC simulations.

Tracking efficiency as fn of η

12