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Belle Il HSF CDB Solution
Features & Functionality

* Payload agnostic by design, loose server-client coupling (REST Interface)

* Proven scalability O(10M) payloads

« Easy deployment, configuration & horizontal scaling
« Based completely on open source software:

* Postgres, Django python API, c++ client library

« Deployed on kubernetes and / or OKD/OpenShift, config via helm
 Integrated support of the common tag workflows

« Various caching options




Conditions Data — HSF Recommendations

« HSF Conditions Databases activity: https://hepsoftwarefoundation.org/activities/conditionsdb.html

» Discussions across various experiments

« Key recommendations for conditions data handling

» Separation of payload queries from metadata queries

« Schema below to organise payloads
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https://hepsoftwarefoundation.org/activities/conditionsdb.html

Implementation’s Database schema concept

e Simple DB Schema
o Derived from the HSF Conditions Database white paper
e Payload objects are combined with IOVs in a single table
o Grouped by type and linked to the GT
e Performance Optimization
o Read requests for Payload IOVs are optimized
o Various techniques and tricks are used to speed up these read requests, as described in the
following slides




HSF Database Schema

Payloads are not
stored in schema
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Combined IOV column

e Querying by two IOVs, namely major and minor (experiment and run numbers in Belle |l), can be a bit complex. To
streamline this process, we've implemented a combined 10V field. Here’s how it works:
e Combined IOV Field:
o Integrates both major and minor IOVs
m Major IOV: Represents the whole part.
m  Minor IOV: Represents the fractional part.
o Used internally to speed up queries.
o Hidden from users for simplicity.

comb iov = models.DecimalField@b column='comb iov', max digits=38, decimal places=19, null=True)

data['comb iov'] = Decimal (Decimal (data['major iov"]) + Decimal (data["minor iov"]) / 10 ** 19)




Covering index

e Definition and Benefits:

o A covering index in PostgreSQL is an index that includes all the columns required to satisfy a query,
allowing the query to be executed entirely from the index without accessing the table. This can
significantly improve query performance by reducing |I/O operations.

o Covering indexes are particularly useful for read-heavy operations where specific queries are
frequently executed. They help in reducing the number of data pages read from the disk, thus
speeding up query execution times.

class Meta:
db table = u'PayloadIOV'
indexes = |
models.Index ( 'payload list', F('comb iov').desc(nulls last=True), name='covering idx')

]




Raw SQL - Combined IOV Column

Preselection on:
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* Preselection on major- & minor IOV (AND / OR)
» Scales with entries to consider
* Query uses ‘Filter’

* Preselection on single column ( <=)

e Constant time

* Query uses ‘Index Condition’

« Combine major- and minor IOV into single column:

major_iov | minor_iov comb_iov
———————————— +————————————+—————-——————————————————————————
477658914 | 1001747433 | 477658914 .0000000001001747433

23283443 | 1525747152 |  23283443.0000000001525747152
1834979804 | 648013294 | 1834979804 .0000000000648013294

bigint bigint decimal(38, 19)

» Fast across all values while selecting on both



PayloadlOV Read APl — Raw SQL Query

SELECT pi.payload url, pi.major jiov, pi.minor ijiov,

pt.name, .. For each PayloadList (Type)

FROM "PayloadList" pl @

JOIN "GlobalTag" gt ON pl.global tag id = gt.id AND

gt.name = % (my gt)s Get Payloads descending

JOIN LATERAL (_ ordered by combined IOV
SELECT payload url, major iov, minor_ iov, ..
FROM "PayloadIOV" pi Limit return to 1 line - latest
WHERE pi.payload list id = pl.id Payload for a given IOVs

AND pi.comb_iov <= CAST (% (my major iov)s + <4:::£7

CAST (% (my minor iov)s AS DECIMAL(19,0)) / 10E18 AS

DECIMAL (38,19)) And then append the results
ORDER BY pi.comb iov DESC of each subquery to create
LIMIT 1 the final output

) pi ON true
JOIN "PayloadType" pt ON pl.payload type id = pt.id;

o LATERAL joining. Without LATERAL, each sub-SELECT is evaluated independently and so cannot cross-reference any other FROM item
eCovering index on Payload table including combined IOV and reference to the PayloadList




Performance Testing — Strategy

« Simulate expected DB occupancy

« Simulate access patterns

* Query read API for payload URL

» Parallel requests via HTC or MT

Scenario Payload Types Payload 10Vs (per type)
tiny 10 100 (10)

tiny-moderate 10 2000 (200)

moderate 100 20000 (200)
heavy-usage 100 500000 (5000)
worst-case 200 5200000 (26000)

All following tests:

* Random major- and minor IOV, no caching
* Query metadata only, no payloads
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Performance Testing — ORM vs Raw SQL

Resp. freq. vs size of queried GT

» High frequency read API workflow: s : —— Optimized raw SQL
—+— ORM (default)
—+— ORM (for-loop)

 Filter on global tag, major- and minor IOV * 250 1

» Find ‘latest’ IOV for each payload type **
» Return payload type, file URL, IOV

200 A

« Django’s ORM writes query for user 150

» Optimized raw SQL query

100 A
« Covering index (index-only scan)

mean response frequency [Hz]

« Combined IOV column <major.minor> 50 A

« Lateral join operation

0 T T : — = ‘i = 1
tiny tiny-moderate moderate heavy-usage worst-case

DB occupancy scenario

*: my_major<major_iov OR (my_major=major_iov AND my_minor<=minor_iov) **: for max major_iov, find max minor_iov M




Performance Testing — Scaling

Investigate scaling w/ size of queried GT
o Content of DB remains constant
Measure mean response frequencies
o Scales with number of payload types
m More data to sort and return
o Almost flat vs number of IOVs
m Index scan (covering index)
Also tested scaling w.r.t. size of DB
o No dependence, plot in backup
Other tricks used to reach this
performance:
o Combined IOV
o Lateral joining

250 A
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Cloning of the GT of 100K payloadlOVs
takes only ~30 sec
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Performance Testing — Scaling

Resp. freq. vs size of queried GT

L =
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« Scales with number of payload types

* Almost flat w.r.t. number of IOVs

mean response frequency [Hz]

Resp. freq. vs DB size
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» Performance depends on size of queried GT

» Additional ‘stuff’ in DB has no significant impact



Performance Testing — High Frequency

—— response
—— request

5000 - \
« Simulate offline reco use case

10k requests sent : .
« Many jobs launched at same time

4000 A
within ~1.2 secs
o » Cooperative multithreading (asynchio)
- :
Z » Send requests firsts
2000 . * Process responses later
received all
reSponse;"e"C‘”th'” ~95 - Allows very high peak request frequency
» Server-side queuing of requests works

1000 - /

20 30 40
elapsed time [s]
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Deployment on OKD (OpenShift)

Helm

f | olkd

W
nginx <=>| Django ﬂ]@ pgBouncer — Postgres

i Aut d depl
/mnt /mnt /mnt /var/lib/pgsql/data utomate ep Oyment_
| | cron on OKD (OpenShift) using
0gs 0gs
Cpg dump ) \ Helm chart
» Horizontally scalable
/current_logs db_dump_26.20.2022.tgz /data
* Open Source only
nfs (persistent storage)
e Helm streamlines the deployment of Kubernetes clusters Easily adoptable for
e Classic deployment at VMs also possible and has been tested various HEP experiments

e all-in-a-single-container image available

B“““K“’-’l"[" Scientific Data and

NATIONAL LABORATORY | Computing Center

[, =N



https://github.com/BNLNPPS/nopayloaddb-charts
https://github.com/BNLNPPS/nopayloaddb-charts

Belle Il migration to OKD/OpenShift

* Due to issues with our existing Kubernetes infrastructure, we have initiated a migration to OKD/OpenShift
O We are adapting the HSF Helm deployment configuration to support our current Java application
O We have already successfully conducted a series of functional tests

O  This progress will significantly streamline future migration

Helm

Belle Il CDB !

l
g Java/
OKD test instance nginx <:> > Spring <:> Postgres
at BNL SDCC O boot O <

This progress will significantly streamline the complete future migration
This shouldn't affect current operation

16




|3

One Year of Successful Production in sPHE\IIX

Valuable Experience gathered:

» Bugfixes regarding retry mechanism, check for file 100y
system write permission, 1400}
and sPHENIX’s compiler optimizations

Number of requests per second in Nginx logs

=
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o

o
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=

o

o

o
T

« CDB throughput issue at the level of ~20K almost
concurrent jobs.

800

600

Number of requests per second

400

* Implemented very conservative Nginx

caching: 1sec for most used resource call ) i
0

« Future plan: different client-configurable U A
server-side caching strategies o <
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Experience from (\

e nopayloadclient has been accepted into SciSoft (FNAL)
e Created prototype for DUNE-specific client: dunenpc

o Developed art Service to interface dunenpc
e Deployed test instance of backend @ CERN

o Apache & bare Django on VM (for integration tests)

o Created corresponding configuration file

‘ Successfully ran DUNE offline dummy job
w/ access to our DB

LAY,
SOft

<>
bYart
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Conclusion

» We have observed an increase in problems and issues with the Belle 1| CDB

» Additionally, we anticipate significant limitations with the current implementation

« We’re considering HSF CDB as the candidate to replace current service

» Django REST API: nopayloaddb

» Automated deployment on OKD with helm-chart

» C++ client-side client; nopayloadclient

« HSF CDB performance tests show solid results
* One year of successful production in sSPHENIX
« Also experience is gained from the Dune test-instance

» ePIC collaboration is now considering the migration to the HSF CDB

19


https://github.com/BNLNPPS/nopayloaddb
https://github.com/BNLNPPS/nopayloaddb-charts
https://github.com/BNLNPPS/nopayloadclient
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Conditions Data — Introduction

“Conditions data is any additional data needed to process event data”

Changes over time High access rates Heterogeneous data

* Repeat detector calibration * Distributed computing » Granularity varies (time
with larger cosmic dataset jobs access same indexed, run-indexed,
* Improve calibration conditions data constant)
algorithms simultaneously » Structure of payload varies
* Access rates up to ~kHz (3D map, time-indexed

values, single number, ...)

Fast DB queries &

Versioning & configuration
ioning Iguratl effective caching

Payload agnostic by design

Similar challenges for various HEP experiments

21




Conditions Data — Use Cases

Use case Example

- HSF Conditions Database meeting: use cases Online * High Level Trigger
https://indico.cern.ch/event/1280790/
« Most can be realised w/ HSF Recomm. Reprocessing * Run reco w/ improved calib.

* Most demanding use-case is Analysis « High level physics analysis

Fast-Processing. Goal: Development * Test new calib. within existing GT

« Publish data for analysis fast ) S _
Lol elel=Eile M * Process data w/ just-in-time calib.

« Maximize physics performance

b
Payloads, é

IOV List, ﬁ

Orchestration

, 1 1 | | |
Time | | | | | | | | | | | | | | —> 22



https://indico.cern.ch/event/1280790/

PostgreSQL High-Availability Cluster

Open source Kubernetes
operator for HA PostgreSQL

» Consider DB cluster for high-availability and
higher performance
« CloudNativePG:
» Open source operator (Kubernetes) for
PostgreSQL
» Primary / Standby architecture

Database Access Layer

» Native support for pgBouncer connection

pooling

Database Layer

PostgreSQL ISy PostgreSQL PostgreSQL
Primary Standby Standby



https://cloudnative-pg.io/

Investigating Query Plans - |

Hash Join (cost=7.23..410.15 rows=86 width=70) (actual time=6.111..365.158 rows=200 loops=1)
Hash Cond: (pl.payload_type_id = pt.id)
-> Nested Loop (cost=0.71..403.40 rows=86 width=69) (actual time=6.017..364.977 rows=200 loops=1)
-> Nested Loop (cost=0.15..11.70 rows=86 width=16) (actual time=0.048..0.133 rows=201 loops=1)
-> Seq Scan on "GlobalTag" gt (cost=0.00..1.09 rows=1 width=8) (actual time=0.023..0.025 rows=1 loops=1)
Filter: ((name)::text = 'worst-case"::text)
Rows Removed by Filter: 6
-> Index Scan using "PayloadList_global_tag_id_2b35c85f" on "PayloadList" pl
(cost=0.15..9.75 rows=86 width=24) (actual time=0.022..0.083 rows=201 loops=1)

Index Cond: (global_tag_id = gt.id)
-> Limit (cost=0.56..4.53 rows=1 width=61) (actual time=1.815..1.815 rows={ loops=201)

-> Index Only Scan using combo_covering_idx on "PayloadlOV" pi
(cost=0.56..3484.55 rows=876 width=61) (actual time=1.815..1.815 rows=1 loops=201)
Index Cond: (payload_list_id = pl.id)
Filter: ((major_iov < 100000000) OR ((major_iov = 100000000) AND (minor_iov <= 100000000)))
Rows Removed by Filter: 24669
Heap Fetches: 0
-> Hash (cost=4.01..4.01 rows=201 width=17) (actual time=0.078..0.078 rows=201 loops=1)
Buckets: 1024 Batches: 1 Memory Usage: 19kB
-> Seq Scan on "PayloadType" pt (cost=0.00..4.01 rows=201 width=17) (actual time=0.018..0.043 rows=201 loops=1)

Planning Time: 0.996
Execution Time: 365

AOlJoulw % -1olew

Hash Join (cost=7.23..90.89 rows=86 width=70) (actual time=0.309..3.244 rows=200 loops=1)
Hash Cond: (pl.payload_type_id = pt.id)
-> Nested Loop (cost=0.71..84.14 rows=86 width=69) (actual time=0.075..2.935 rows=200 loops=1)
-> Nested Loop (cost=0.15..11.70 rows=86 width=16) (actual time=0.028..0.121 rows=201 loops=1)
-> Seq Scan on "GlobalTag" gt (cost=0.00..1.09 rows=1 width=8) (actual time=0.013..0.018 rows=1 loops=1)
Filter: ((name)::text = 'worst-case"::text)
Rows Removed by Filter: 6
-> Index Scan using "PayloadList_global_tag_id_2b35c85f" on "PayloadList" pl
(cost=0.15..9.75 rows=86 width=24) (actual time=0.012..0.063 rows=201 loops=1)

Index Cond: (global_tag_id = gt.id)
-> Limit (cost=0.56..0.82 rows=1 width=61) (actual time=0.014..0.014 rows={| loops=201)

-> Index Only Scan using combo_covering_idx on "PayloadlOV" pi
(cost=0.56..232.55 rows=876 width=61) (actual time=0.013..0.013 rows=1 loops=201)
Index Cond: ((payload_list_id = pl.id) AND (major_iov < 100000000))
Heap Fetches: 0
-> Hash (cost=4.01..4.01 rows=201 width=17) (actual time=0.073..0.074 rows=201 loops=1)
Buckets: 1024 Batches: 1 Memory Usage: 19kB
-> Seq Scan on "PayloadType" pt (cost=0.00..4.01 rows=201 width=17) (actual time=0.008..0.036 rows=201 loops=1)

Planning Time: 0.645
Execution Time: 3.

AOlolew AjluQ
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Investigating Query Plans - i

-> Limit (cost=0.56..4.53 rows=1 width=61) (actual time=1.815..1.815 rows=1 loops=201)
-> Index Only Scan using combo_covering_idx on "PayloadlOV" pi

(cost=0.56..3484.55 rows=876 width=61) (actual time=1.815..1.815 rows=1 loops=201)
nd: (payload_list_id = pl.id)

—tmajor_iov < 100000000) OR ((major_iov = 100000000) AND (minor_iov <= 100000000)))
Rows Removed by Filter: 24669

Heap Fetches: 0

Index Condition & Filter

-> Limit (cost=0.56..0.82 rows=1 width=61) (actual time=0.014..0.014 rows=1 loops=201)
-> Index Only Scan using combo_covering_idx on "PayloadlOV" pi
(cost=0.56..232.55 rows=876 width=61) (actual time=0.013..0.013 rows=1 loops=201)

In ond: ((payload_list_id = pl.id) AND (major_iov < 100000000))
Heap Fetches: 0

Index Condition Only




History of the HSF CDB:
road to ‘HSF product’

* sSPHENIX needed CDB. Belle II's solution lacked scalability
* HSF white paper suggested new DB schema w/ good scalability & payload agnostic

* Started to work on a reference implementation according to guidelines of that paper

* In cooperation with HSF conditions data activity
» Collect use cases & define minimal API
* Presented implementation and performance results at CHEP
« (Garnered attention and interest from HEP community
« Our implementation has been adopted for production use by sPHENIX
« Drove forward HSF integration, published source code, put it under Apache 2.0 license

« Now listed as official ‘'HSF product’ https://hepsoftwarefoundation.org/projects.html



https://hepsoftwarefoundation.org/projects.html

Features & Functionality

* Payload agnostic by design, loose server-client coupling (REST Interface)

* Proven scalability O(10M) payloads

« Easy deployment, configuration & horizontal scaling
« Standalone CLI & easy-to-integrate c++ client library
« Based completely on open source software:
« Postgres, Django python API, c++ client library
« Deployed on kubernetes and / or OKD/OpenShift, config via helm
* Integrated support of the common tag workflows

I  Various caching options

N



H S F C D B C I ie nt client | server remote

side | side payload
nopayloadclient: store
[ N——

payload

e Client-side stand-alone C++ tool

« Communicates with nopayloaddb (server)

* Local caching

« Handling of payloads

nopayloadclient </.>“ =

REST*
Experiment-

agnostic lib O nopayloaddb

nopayloadclient m

*Example query (simplified)

sPHENIX- DUNE-
specific lib specific lib curl http://<host>/api/payloadiovs/?gtName=test gté&iovNum=42
-> {type_1: url 1, type 2: url 2, .}

sphenixnpc



https://github.com/BNLNPPS/nopayloadclient
https://github.com/BNLNPPS/nopayloaddb

