
Review: HSF Reference Implementation
Conditions Database for BelleII
2. Proposed solution

11 July 2024

Ruslan Mashinistov, John S. De Stefano Jr, Michel Villanueva

1

2

Belle II HSF CDB Solution
Features & Functionality

• Payload agnostic by design, loose server-client coupling (REST Interface)

• Proven scalability O(10M) payloads

• Easy deployment, configuration & horizontal scaling

• Based completely on open source software:

• Postgres, Django python API, c++ client library

• Deployed on kubernetes and / or OKD/OpenShift, config via helm

• Integrated support of the common tag workflows

• Various caching options

Conditions Data – Recommendations
• HSF Conditions Databases activity: https://hepsoftwarefoundation.org/activities/conditionsdb.html

• Discussions across various experiments

• Key recommendations for conditions data handling

• Separation of payload queries from metadata queries

• Schema below to organise payloads top-level configuration
of all conditions data

‘Interval of Validity’:
generalized concept of time
(can be time stamp, run
number, lumi block, …)

configuration for each
type of conditions data

actual data
(e.g. in a file)

3

HEP Software Foundation
 Community White Paper Working

Group – Conditions Data

https://hepsoftwarefoundation.org/activities/conditionsdb.html

Implementation’s Database schema concept

4

● Simple DB Schema
○ Derived from the HSF Conditions Database white paper

● Payload objects are combined with IOVs in a single table
○ Grouped by type and linked to the GT

● Performance Optimization
○ Read requests for Payload IOVs are optimized
○ Various techniques and tricks are used to speed up these read requests, as described in the

following slides

HSF Database Schema

5

Lo
ck

ed

U
nl

oc
ke

d

major- & minor
IOV for more
flexibility

IOVs also have
an end

Combination of major and minor
IOV into single column for
performance optimisation

Payloads are not
stored in schema

Combined IOV column

6

● Querying by two IOVs, namely major and minor (experiment and run numbers in Belle II), can be a bit complex. To
streamline this process, we've implemented a combined IOV field. Here’s how it works:

● Combined IOV Field:
○ Integrates both major and minor IOVs

■ Major IOV: Represents the whole part.
■ Minor IOV: Represents the fractional part.

○ Used internally to speed up queries.
○ Hidden from users for simplicity.

comb_iov = models.DecimalField(db_column='comb_iov', max_digits=38, decimal_places=19, null=True)

data['comb_iov'] = Decimal(Decimal(data["major_iov"]) + Decimal(data["minor_iov"]) / 10 ** 19)

Covering index

7

● Definition and Benefits:
○ A covering index in PostgreSQL is an index that includes all the columns required to satisfy a query,

allowing the query to be executed entirely from the index without accessing the table. This can
significantly improve query performance by reducing I/O operations.

○ Covering indexes are particularly useful for read-heavy operations where specific queries are
frequently executed. They help in reducing the number of data pages read from the disk, thus
speeding up query execution times.

class Meta:
db_table = u'PayloadIOV'
indexes = [

models.Index('payload_list', F('comb_iov').desc(nulls_last=True), name='covering_idx')
]

8

Raw SQL - Combined IOV Column
• Preselection on major- & minor IOV (AND / OR)

• Scales with entries to consider

• Query uses ‘Filter’

• Preselection on single column (<=)

• Constant time

• Query uses ‘Index Condition’

• Combine major- and minor IOV into single column:

bigint bigint decimal(38, 19)

• Fast across all values while selecting on both

9

PayloadIOV Read API – Raw SQL Query
SELECT pi.payload_url, pi.major_iov, pi.minor_iov,
pt.name, …
FROM "PayloadList" pl
JOIN "GlobalTag" gt ON pl.global_tag_id = gt.id AND
gt.name = %(my_gt)s
JOIN LATERAL (
 SELECT payload_url, major_iov, minor_iov, …
 FROM "PayloadIOV" pi
 WHERE pi.payload_list_id = pl.id
 AND pi.comb_iov <= CAST(%(my_major_iov)s +
CAST(%(my_minor_iov)s AS DECIMAL(19,0)) / 10E18 AS
DECIMAL(38,19))
 ORDER BY pi.comb_iov DESC
 LIMIT 1
) pi ON true
JOIN "PayloadType" pt ON pl.payload_type_id = pt.id;

For each PayloadList (Type)

Get Payloads descending
ordered by combined IOV

Limit return to 1 line - latest
Payload for a given IOVs

And then append the results
of each subquery to create
the final output

●LATERAL joining. Without LATERAL, each sub-SELECT is evaluated independently and so cannot cross-reference any other FROM item
●Covering index on Payload table including combined IOV and reference to the PayloadList

1
0

Performance Testing – Strategy

• Simulate expected DB occupancy
mean response frequencymean response time

Scenario Payload Types Payload IOVs (per type)

tiny 10 100 (10)

tiny-moderate 10 2000 (200)

moderate 100 20000 (200)

heavy-usage 100 500000 (5000)

worst-case 200 5200000 (26000)

• Random major- and minor IOV, no caching
• Query metadata only, no payloads

All following tests:

• Simulate access patterns

• Query read API for payload URL

• Parallel requests via HTC or MT

11

Performance Testing – ORM vs Raw SQL

• High frequency read API workflow:

• Filter on global tag, major- and minor IOV *

• Find ‘latest’ IOV for each payload type **

• Return payload type, file URL, IOV

*: my_major<major_iov OR (my_major=major_iov AND my_minor<=minor_iov) **: for max major_iov, find max minor_iov

Resp. freq. vs size of queried GT

• Django’s ORM writes query for user

• Optimized raw SQL query

• Covering index (index-only scan)

• Combined IOV column <major.minor>

• Lateral join operation

Performance Testing – Scaling
● Investigate scaling w/ size of queried GT

○ Content of DB remains constant
● Measure mean response frequencies

○ Scales with number of payload types
■ More data to sort and return

○ Almost flat vs number of IOVs
■ Index scan (covering index)

● Also tested scaling w.r.t. size of DB
○ No dependence, plot in backup

● Other tricks used to reach this
performance:
○ Combined IOV
○ Lateral joining

● Cloning of the GT of 100K payloadIOVs
takes only ~30 sec

Resp. freq. vs size of queried GT

1M IOVs

12

13

Performance Testing – Scaling

• Scales with number of payload types

• Almost flat w.r.t. number of IOVs

• Performance depends on size of queried GT

• Additional ‘stuff’ in DB has no significant impact

Resp. freq. vs size of queried GT Resp. freq. vs DB size

14

Performance Testing – High Frequency

• Simulate offline reco use case

• Many jobs launched at same time

• Cooperative multithreading (asynchio)

• Send requests firsts

• Process responses later

• Allows very high peak request frequency

• Server-side queuing of requests works

10k requests sent
within ~1.2 secs

received all
responses within ~55

sec

1
5

Deployment on OKD (OpenShift)

• Automated deployment
on OKD (OpenShift) using
Helm chart

• Horizontally scalable
• Open Source only

Easily adoptable for
various HEP experiments

● Helm streamlines the deployment of Kubernetes clusters
● Classic deployment at VMs also possible and has been tested
● all-in-a-single-container image available

https://github.com/BNLNPPS/nopayloaddb-charts
https://github.com/BNLNPPS/nopayloaddb-charts

Belle II migration to OKD/OpenShift

16

• Due to issues with our existing Kubernetes infrastructure, we have initiated a migration to OKD/OpenShift

○ We are adapting the HSF Helm deployment configuration to support our current Java application

○ We have already successfully conducted a series of functional tests

○ This progress will significantly streamline future migration

nginx
Java/
Spring
boot

Postgres

P
ay

ar
a

Helm

This progress will significantly streamline the complete future migration
This shouldn't affect current operation

Belle II CDB
OKD test instance

at BNL SDCC

One Year of Successful Production in
Valuable Experience gathered:

• Bugfixes regarding retry mechanism, check for file
system write permission,
and sPHENIX’s compiler optimizations

• CDB throughput issue at the level of ~20K almost
concurrent jobs.

• Implemented very conservative Nginx
caching: 1sec for most used resource call

• Future plan: different client-configurable
server-side caching strategies

17

Experience from
● nopayloadclient has been accepted into SciSoft (FNAL)

● Created prototype for DUNE-specific client: dunenpc

○ Developed art Service to interface dunenpc

● Deployed test instance of backend @ CERN

○ Apache & bare Django on VM (for integration tests)

○ Created corresponding configuration file

18

Successfully ran DUNE offline dummy job
w/ access to our DB

19

Conclusion
• We have observed an increase in problems and issues with the Belle II CDB

• Additionally, we anticipate significant limitations with the current implementation

• We’re considering HSF CDB as the candidate to replace current service

• Django REST API: nopayloaddb

• Automated deployment on OKD with helm-chart

• C++ client-side client: nopayloadclient

• HSF CDB performance tests show solid results

• One year of successful production in sPHENIX

• Also experience is gained from the Dune test-instance

• ePIC collaboration is now considering the migration to the HSF CDB

https://github.com/BNLNPPS/nopayloaddb
https://github.com/BNLNPPS/nopayloaddb-charts
https://github.com/BNLNPPS/nopayloadclient

20

Backup

Conditions Data – Introduction

21

“Conditions data is any additional data needed to process event data”

Changes over time

• Repeat detector calibration
with larger cosmic dataset

• Improve calibration
algorithms

High access rates

• Distributed computing
jobs access same
conditions data
simultaneously

• Access rates up to ~kHz

Heterogeneous data

• Granularity varies (time
indexed, run-indexed,
constant)

• Structure of payload varies
(3D map, time-indexed
values, single number, …)

Versioning & configuration Fast DB queries &
effective caching Payload agnostic by design

Similar challenges for various HEP experiments

22

Conditions Data – Use Cases

• HSF Conditions Database meeting: use cases
https://indico.cern.ch/event/1280790/

• Most can be realised w/ HSF Recomm.

• High Level TriggerOnline

• Run reco w/ improved calib.Reprocessing

• High level physics analysisAnalysis

• Test new calib. within existing GTDevelopment

• Process data w/ just-in-time calib.Fast-processing

ExampleUse case

• Most demanding use-case is

Fast-Processing. Goal:

• Publish data for analysis fast

• Maximize physics performance

https://indico.cern.ch/event/1280790/

23

PostgreSQL High-Availability Cluster
Open source Kubernetes
operator for HA PostgreSQL

• Consider DB cluster for high-availability and

higher performance

• CloudNativePG:

• Open source operator (Kubernetes) for

PostgreSQL

• Primary / Standby architecture

• Native support for pgBouncer connection

pooling

https://cloudnative-pg.io/

24

Hash Join (cost=7.23..90.89 rows=86 width=70) (actual time=0.309..3.244 rows=200 loops=1)
 Hash Cond: (pl.payload_type_id = pt.id)
 -> Nested Loop (cost=0.71..84.14 rows=86 width=69) (actual time=0.075..2.935 rows=200 loops=1)
 -> Nested Loop (cost=0.15..11.70 rows=86 width=16) (actual time=0.028..0.121 rows=201 loops=1)
 -> Seq Scan on "GlobalTag" gt (cost=0.00..1.09 rows=1 width=8) (actual time=0.013..0.018 rows=1 loops=1)
 Filter: ((name)::text = 'worst-case'::text)
 Rows Removed by Filter: 6
 -> Index Scan using "PayloadList_global_tag_id_2b35c85f" on "PayloadList" pl
 (cost=0.15..9.75 rows=86 width=24) (actual time=0.012..0.063 rows=201 loops=1)
 Index Cond: (global_tag_id = gt.id)
 -> Limit (cost=0.56..0.82 rows=1 width=61) (actual time=0.014..0.014 rows=1 loops=201)
 -> Index Only Scan using combo_covering_idx on "PayloadIOV" pi
 (cost=0.56..232.55 rows=876 width=61) (actual time=0.013..0.013 rows=1 loops=201)
 Index Cond: ((payload_list_id = pl.id) AND (major_iov < 100000000))
 Heap Fetches: 0
 -> Hash (cost=4.01..4.01 rows=201 width=17) (actual time=0.073..0.074 rows=201 loops=1)
 Buckets: 1024 Batches: 1 Memory Usage: 19kB
 -> Seq Scan on "PayloadType" pt (cost=0.00..4.01 rows=201 width=17) (actual time=0.008..0.036 rows=201 loops=1)
 Planning Time: 0.645 ms
 Execution Time: 3.299 ms

Hash Join (cost=7.23..410.15 rows=86 width=70) (actual time=6.111..365.158 rows=200 loops=1)
 Hash Cond: (pl.payload_type_id = pt.id)
 -> Nested Loop (cost=0.71..403.40 rows=86 width=69) (actual time=6.017..364.977 rows=200 loops=1)
 -> Nested Loop (cost=0.15..11.70 rows=86 width=16) (actual time=0.048..0.133 rows=201 loops=1)
 -> Seq Scan on "GlobalTag" gt (cost=0.00..1.09 rows=1 width=8) (actual time=0.023..0.025 rows=1 loops=1)
 Filter: ((name)::text = 'worst-case'::text)
 Rows Removed by Filter: 6
 -> Index Scan using "PayloadList_global_tag_id_2b35c85f" on "PayloadList" pl
 (cost=0.15..9.75 rows=86 width=24) (actual time=0.022..0.083 rows=201 loops=1)
 Index Cond: (global_tag_id = gt.id)
 -> Limit (cost=0.56..4.53 rows=1 width=61) (actual time=1.815..1.815 rows=1 loops=201)
 -> Index Only Scan using combo_covering_idx on "PayloadIOV" pi
 (cost=0.56..3484.55 rows=876 width=61) (actual time=1.815..1.815 rows=1 loops=201)
 Index Cond: (payload_list_id = pl.id)
 Filter: ((major_iov < 100000000) OR ((major_iov = 100000000) AND (minor_iov <= 100000000)))
 Rows Removed by Filter: 24669
 Heap Fetches: 0
 -> Hash (cost=4.01..4.01 rows=201 width=17) (actual time=0.078..0.078 rows=201 loops=1)
 Buckets: 1024 Batches: 1 Memory Usage: 19kB
 -> Seq Scan on "PayloadType" pt (cost=0.00..4.01 rows=201 width=17) (actual time=0.018..0.043 rows=201 loops=1)
 Planning Time: 0.996 ms
 Execution Time: 365.221 ms

O
nly m

ajorIO
V

m
ajor- &

 m
inorIO

V

Investigating Query Plans - I

25

-> Limit (cost=0.56..0.82 rows=1 width=61) (actual time=0.014..0.014 rows=1 loops=201)
 -> Index Only Scan using combo_covering_idx on "PayloadIOV" pi
 (cost=0.56..232.55 rows=876 width=61) (actual time=0.013..0.013 rows=1 loops=201)
 Index Cond: ((payload_list_id = pl.id) AND (major_iov < 100000000))
 Heap Fetches: 0

-> Limit (cost=0.56..4.53 rows=1 width=61) (actual time=1.815..1.815 rows=1 loops=201)
 -> Index Only Scan using combo_covering_idx on "PayloadIOV" pi
 (cost=0.56..3484.55 rows=876 width=61) (actual time=1.815..1.815 rows=1 loops=201)
 Index Cond: (payload_list_id = pl.id)
 Filter: ((major_iov < 100000000) OR ((major_iov = 100000000) AND (minor_iov <= 100000000)))
 Rows Removed by Filter: 24669
 Heap Fetches: 0

Investigating Query Plans - II

Index Condition & Filter

Index Condition Only

2
6

History of the HSF CDB:
road to ‘HSF product’

• sPHENIX needed CDB. Belle II’s solution lacked scalability

• HSF white paper suggested new DB schema w/ good scalability & payload agnostic

• Started to work on a reference implementation according to guidelines of that paper

• In cooperation with HSF conditions data activity

• Collect use cases & define minimal API

• Presented implementation and performance results at CHEP

• Garnered attention and interest from HEP community

• Our implementation has been adopted for production use by sPHENIX

• Drove forward HSF integration, published source code, put it under Apache 2.0 license

• Now listed as official ‘HSF product’ https://hepsoftwarefoundation.org/projects.html

https://hepsoftwarefoundation.org/projects.html

2
7

Features & Functionality
• Payload agnostic by design, loose server-client coupling (REST Interface)

• Proven scalability O(10M) payloads

• Easy deployment, configuration & horizontal scaling

• Standalone CLI & easy-to-integrate c++ client library

• Based completely on open source software:

• Postgres, Django python API, c++ client library

• Deployed on kubernetes and / or OKD/OpenShift, config via helm

• Integrated support of the common tag workflows

• Various caching options

HSF CDB Client
payload

remote
payload

store

nopayloaddb

client
side

server
side

nopayloadclient

curl http://<host>/api/payloadiovs/?gtName=test_gt&iovNum=42
-> {type_1: url_1, type_2: url_2, …}

*Example query (simplified)

REST*
Experiment-
agnostic lib

nopayloadclient

sPHENIX-
specific lib

sphenixnpc

DUNE-
specific lib

dunenpc

nopayloadclient:

• Client-side stand-alone C++ tool

• Communicates with nopayloaddb (server)

• Local caching

• Handling of payloads

https://github.com/BNLNPPS/nopayloadclient
https://github.com/BNLNPPS/nopayloaddb

