
Review: HSF Reference Implementation
Conditions Database for BelleII
3. Migration timeline and milestones

11 July 2024

Ruslan Mashinistov, John S. De Stefano Jr, Michel Villanueva

1

Required development efforts

2

● Migration of Belle II to the HSF solution requires:

○ Infrastructure and Deployment update

○ Server Development work

○ Client Development work

3

Deployment on OKD (OpenShift)

• Automated deployment
on OKD (OpenShift) using
Helm chart

• Horizontally scalable
• Open Source only

Easily adoptable for
various HEP experiments

● Helm streamlines the deployment of Kubernetes clusters
● Classic deployment at VMs also possible and has been tested
● all-in-a-single-container image available

https://github.com/BNLNPPS/nopayloaddb-charts
https://github.com/BNLNPPS/nopayloaddb-charts

Belle II migration to OKD/OpenShift

4

• Due to issues with our existing Kubernetes infrastructure, we have initiated a migration to OKD/OpenShift

○ We are adapting the HSF Helm deployment configuration to support our current Java application
■ We’re also planning to include advanced DB pooler (pgBouncer) in the deployment

○ We have already successfully conducted a series of functional tests

○ This progress will significantly streamline the complete future migration

nginx
Java/
Spring
boot

Postgres

P
ay

ar
a

Helm

Belle II CDB
OKD test instance

at BNL SDCC

5

Conditions Data – Use Cases

• HSF Conditions Database meeting: use cases
https://indico.cern.ch/event/1280790/

• Most can be realised w/ HSF Recomm.

• High Level TriggerOnline

• Run reco w/ improved calib.Reprocessing

• High level physics analysisAnalysis

• Test new calib. within existing GTDevelopment

• Process data w/ just-in-time calib.Fast-processing

ExampleUse case

• Most demanding use-case is

Fast-Processing. Goal:

• Publish data for analysis fast

• Maximize physics performance

https://indico.cern.ch/event/1280790/

6

All development work on a single slide

Just a fragment of the
outcome notes from the
technical discussion with
Belle II experts

Migrating data to the new DB schema

7

• Data Migration

We plan to migrate the existing data to a new schema, ensuring that all critical
information is transferred without loss.

● JWT Authentication/Authorization

We will migrate the same JWT authentication scheme we currently use.

● The Django application possesses a custom method to verify JWTs
● We will create an additional, configurable, Belle II-specific function to implement

the current authentication logic

The JWT for each authenticated user includes customized claims that define their
permissions:

● b2cdb:admin for administrative roles on global tags
● b2cdb:createiov for manager roles on global tags
● b2cdb:createpayload for permissions related to payloads

Each of these claims is associated with a list of regular expressions:

● The first two claims pertain to global tag names
● The last claim pertains to payload names

JWT only used for writing. Read APIs don’t require JWT

● In OPEN all modifications are allowed
● In RUNNING only addition of new runs is

allowed
● For all others no modifications are allowed
● Only RUNNING and PUBLISHED will be

usable for users

Locked

Unlocked

Current
CDB

HSF
CDB ● In Unlocked all modifications are allowed

● In Locked only addition of new runs is
allowed

Migrating data to the new DB schema

8

● A review of the current set of GT statuses with the software team
confirmed that the current workflow is unnecessarily and overly
complicated.

○ We are considering simplifying it by dropping some
unneeded statuses. For example, the VALIDATED status is
currently not in use

○ After consulting with the software team, we have decided to
include an additional status:

■ Frozen: No modifications to the GlobalTag and its
content are allowed.

● We will provide a custom Belle II-specific API to manage status
changes, controlling the allowed transitions between statuses

○ This function will override the default experiment-agnostic
one and can be activated in the configuration.

○ To store information about allowed transitions, this custom
function will use the "Description" field in the
GlobalTagStatus table, or a new optional field will be added.

● In OPEN all modifications are allowed
● In RUNNING only addition of new runs is

allowed
● For all others no modifications are allowed
● Only RUNNING and PUBLISHED will be

usable for users

Locked

Unlocked

Current
CDB

HSF
CDB ● In Unlocked all modifications are allowed

● In Locked only addition of new runs is
allowed

● In Frozen no modifications are allowed

Frozen

Client / Basf2 migration to HSF CDB
• Belle II uses Python client tools and C++ modules

Figure: DOI 10.1088/1742-6596/1085/3/032032

Module request
payload

1. Database Service:

○ Outcome of the discussion with
DP and SW experts was to
prepare a third metadata provider
in basf2

○ We will have for a while three
providers inside basf2 in parallel
- CentralMetadata - current CDB
- NewCentralMetadata - HSF CDB
- LocalMetadata - SQLite on CVFMS

○ The new one will work for a while
in read-only mode

○ Once the data taking stops in
summer, we will switch to
NewCentralMetadata for writing

2. DBStore: This component will likely
need modifications to accommodate
the changes in GT statuses when
handling payload information.

Likely, no changes required for
the LocalDB implementation

Local cache SQLite

https://iopscience.iop.org/article/10.1088/1742-6596/1085/3/032032

Other development efforts

10

● Versioning

The current CDB implementation includes the concept of a Payload version. Occasionally, Payload files are updated, and the existing implementation
permits overlapping IOVs. In such cases, the client software resolves conflicts by taking the latest version.

While the new HSF implementation prevents overlapping IOVs, we still want to track updates to the Payload files. To enhance human control, we have
decided to use the "Description" field or add a new optional field in the PayloadIOV table to store version information.

● Bulk update running global tag

HSF CDB supports the concept of a running GT. In this scenario, the IOV is open-ended, meaning the current payload is valid from the beginning of its
IOV indefinitely. Even if the GT is locked and no modifications are allowed to already appended PayloadIOVs, users are still permitted to append new
PayloadIOVs if the new IOV starts after the beginning of the last IOV and new is also open-ended.

We have already provided an API to append a single PayloadIOV to the GT. However, we have agreed to implement a new bulk API, which will allow
users to append a consecutive, seamless group of PayloadIOVs, provided the group starts after the beginning of the last appended IOV and the last
IOV in the group is open-ended.

● Python interface

A standalone, command-line client tool developed in Python facilitates various CDB tasks, such as uploading payloads and downloading GTs along
with their corresponding PayloadIOVs. These tools interact with the CDB through its REST interface. Additionally, an auxiliary mechanism is provided
for setting and retrieving CDB authentication tokens.

Migrating to the HSF CDB will demand adapting the Python interface to handle the updated REST API queries and new endpoints. The authentication
mechanisms will remain unchanged.

Timeline

11

12

Backup

Timelines

13

Timelines

14

