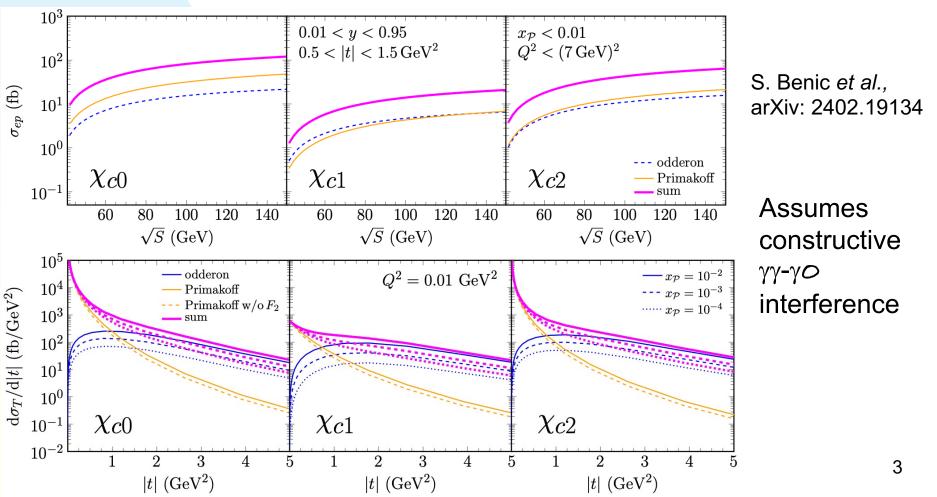

The χ_c at the EIC: Experimental Aspects

Spencer Klein Lawrence Berkeley National Laboratory

- χ_c decays
- Detecting the χ_c
- Important backgrounds

χ_c properties

 3 χ_c states 	State	Mass	Width
	Xc0	3415 MeV	10.7 MeV
	χ c1	3511 MeV	0.84 MeV
	χc2	3556 MeV	1.98 MeV


Two classes of useful decays: hadronic final states or γJ/ψ

- Br $(\chi_{c1} > \gamma J/\psi) = 34.3\%$ (19.5% for χ_{c2} state, 1.4% for χ_{c0})
- Specific hadronic final states have Br of at most a few percent.
 - Tedious to add up enough different hadronic states to achieve a reasonable efficiency.
- Mass separation ~ 50-100 MeV
 - Tough, but ~ within ePIC capabilities for all-charged final states
 - + χ_{c0} χ_{c1} has similar Δ M/M as Y(2S) Y(3S)
 - May be challenging for states containing neutrals

Production via γ Odderon and $\gamma\gamma$ in ep

- Cross-section in femtobarn range largest for χ_{c0}
- σ increases with \sqrt{S} , but faster increase for $\gamma\gamma$ process

 $\gamma \gamma$ process dominates up to ~~ |t| ~ 1 GeV²

χ_{c0} detection

- χ_{c0} has the largest production rate, but Br($\chi_{c0} \rightarrow \gamma J/\psi$) ~ 1.4%
 - Most decays are 4+ prong final states
- If σ(total, with γγ) = 50 fb, and Luminosity=100 fb⁻¹ (after several years), this is 5,000 events total (mostly γγ)
- Loss of efficiency due to limited acceptance in rapidity
 - May be different for $\gamma\gamma$ and $\gamma\phi$
- If efficiency=70% and branching ratios are 2%, this is 70 events/channel, before acceptance.
- Isolation of a reasonably pure γO sample requires $|t| > \sim 1 \text{ GeV}^2$
 - There are more sophisticated approaches involving fitting dσ/dt, but for a simple estimate, consider a hard cut
 - Lose ~ > 95% of the sample but still far from a pure γ O sample
 - 3 events/decay channel? -> very tough

χ_{c0} hadronic decays

Γ_1	2(π ⁺ π ⁻)	$(1.00 \pm 0.13)\%$	S=1.4	1751	~
Γ_2	ρρ			1600	~
Γ_3	$\pi^+\pi^-\pi^0\pi^0$	$(1.86 \pm 0.24)\%$		1752	~
Γ_4	$ ho^+\pi^-\pi^0$ + c.c.	$(2.22\pm 0.35)\%$		1682	~
Γ_5	4 π^0	$(1.13\pm0.15) imes10^{-3}$		1752	~
Γ_6	$K^+K^-\pi^0\pi^0$	$(2.1\pm 0.4) imes 10^{-3}$		1658	~
Γ_7	$K^+\pi^-\overline{K}^0\pi^0$ + c.c.	$(1.41 \pm 0.20)\%$		1657	~
Γ_8	$ ho^- K^+ \overline{K}^0$ + c.c.	$(4.2 \pm 1.3) imes 10^{-3}$		1540	~
Γ_9	$K^*(892)^0 K^- \pi^+ o K^- \pi^+ K^0 \pi^0$ + c.c.	$(3.0\pm 0.8) imes 10^{-3}$			~
Γ_{10}	$K^*(892)^0\overline{K}^0\pi^0 ightarrow K^+\pi^-\overline{K}^0\pi^0$ + c.c.	$(3.9\pm 0.9) imes 10^{-3}$			~
Γ_{11}	$K^*(892)^-K^+\pi^0 o K^+\pi^-\overline{K}^0\pi^0$ + c.c.	$(3.8\pm 0.8) imes 10^{-3}$			~
Γ_{12}	$K^*(892)^+ \overline{K}^0 \pi^- o K^+ \pi^- \overline{K}^0 \pi^0$ + c.c.	$(3.0\pm 0.8) imes 10^{-3}$			~
Γ_{13}	$K^+K^-\eta\pi^0$	$(1.3\pm 0.4) imes 10^{-3}$		1549	~
Γ_{14}	$K^+K^-\pi^+\pi^-$	$(8.3 \pm 1.1) imes 10^{-3}$	S=1.2	1656	~
Γ_{15}	$K^+K^-\pi^+\pi^-\pi^0$	$(1.17 \pm 0.13)\%$		1623	~
Γ_{16}	$K^0_S K^\pm \pi^\mp \pi^+ \pi^-$	$(7.3\pm 0.8) imes 10^{-3}$		1621	~
Γ_{17}	$K^+\overline{K}^*(892)^0\pi^-$ + c.c.	$(2.1 \pm 1.0) imes 10^{-3}$		1602	~
Γ_{18}	$K^*(892)^0\overline{K}^*(892)^0$	$(2.2\pm 0.9) imes 10^{-3}$	S=2.3	1538	~
Γ_{19}	3(<i>π</i> ⁺ <i>π</i> ⁻)	$(1.53 \pm 0.19)\%$	S=3.8	1707	~
Γ_{20}	$\phi\phi$	$(1.23\pm0.07) imes10^{-3}$	S=1.9	1457	~
Γ_{21}	φφη	$(5.4\pm 0.7) imes 10^{-4}$		1206	~
Γ_{22}	ωω	$(8.6 \pm 1.0) imes 10^{-4}$		1597	~
Γ_{23}	$\omega K^+ K^-$	$(7.3 \pm 0.9) imes 10^{-4}$		1540	~
Γ_{24}	$\omega\phi$	$(9.7\pm2.8) imes 10^{-6}$		1529	~
Γ_{25}	ππ	$(2.27\pm0.10) imes10^{-3}$		1773	~
Γ_{26}	$ ho^0\pi^+\pi^-$	$(3.6 \pm 1.5) imes 10^{-3}$		1682	~

From the Particle Data Book

Another background

- Vector meson dominance \rightarrow large $\Psi(2S)$ production rate
 - σ(ep-> Ψ(2S)p) = 1.4 nb for 18 GeV e on 275 GeV p
 - 30,000 times larger than for χ_{c0}
- Br (Ψ(2S)-> γχ_{c0}) = 9.8 ± 0.2%
 - 3,000 times larger than direct χ_{c0} production
 - In $\Psi(2S)$ rest frame photon energy = 260 MeV
 - Good energy for calorimetry, but solid angle < 100%
 - If ~95% coverage, then missed-photon background is 150 times larger than direct χ_{c0} production
 - Also, some photons may be Lorentz downshifted below threshold

Missing energy/momentum cuts could eliminate some background

- Missing photons with low p_T probably cannot be adequately rejected
- χ_c from Y(2S) probably have similar p_T spectrum to χ_c from πO

Concept: SK, Phys. Rev. D 98, 118501 (2018) σ: SK and M. Lomnitz, Phys. Rev. C 99, 015203 (2019)

$\Psi(\text{2S})$ backgrounds to the $~\chi_c\text{1}$ and $\chi_c\text{2}$

Branching ratios $\Psi(2S) \rightarrow \gamma \chi_{cn}$ all similar

State	Br (Y(2S)-> χ _{cn}
χ _{c0}	9.8 ± 0.2%
χc1	9.7 ± 0.3%
Xc2	9.4 ± 0.2%

 Backgrounds are similar, so experimentally, χ_{c0} seems most attractive because of its larger direct production rate.

Detection of the $\chi_c 1$ and $\chi_c 2$

Detection via χ_{c1,2} -> γJ/ψ may be relatively more attractive because of larger radiative branching ratios

• Br $(\chi_{c1} \rightarrow \gamma J/\psi) = 34.3\%$ & Br $(\chi_{c2} \rightarrow \gamma J/\psi) = 19.5\%$

• Not a panacea, because Br (J/y-> ee, $\mu\mu$) are only 6% each.

- For same 50 fb cross-section and Luminosity=100 fb⁻¹ the rate of γee and $\gamma \mu \mu$ final states is ~~100 each for $\gamma \gamma + \gamma o$
 - Radiative branching ratio for ξ_{c1} is larger, but predicted production cross section is larger for ξ_{c2}.
 - Background from Y(2S) feeddown is ~285,000/164,000 γee and γμμ events each through the χ_{c1} and χ_{c2} respectively.
 - 95% calorimeter coverage would reduce this background to ~14,500 and 8200 events each respectively.
- At best, extremely challenging.

Conclusions

- The χ_c states are interesting to study as possible channels to detect the Odderon.
- However, the rates are low, and there are many possible final states
 - The χ_{c0} is most copiously produced, so may be the most attractive experimental target
- Backgrounds are large
 - $\gamma\gamma$ -> dominates over γ + Odderon, except at large [t]
 - $\gamma P \rightarrow \Psi(2S) \rightarrow \gamma \chi_c$ dominates over direct χ_c production mechanisms
 - Vector meson dominance strikes again!