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Collider study of nuclear matter & Monte Carlo models

• Utilize perturbative understanding at short distances to learn strongly-coupled & many body
phenomena at large distances.

• For example, one can look at hadrons produced at small pT in SIDIS to learn the partonic
motion inside proton — the TMD region.
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• With nuclear targets, some observables can be studied in ep framework in certain kinematics.
Understanding of other phenomena still heavily relies on Monte-Carlo simulations and modeling.
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Two limiting pictures of DIS with the nucleus

Tomography region
Hard vertex localized to 1–2 nucleons

ν
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eHIJING 1.0
& this talk

Small-x region
Coherent interactions with whole brick
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A1/3

J. Zhou’s talk
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eHIJING generator for eA in the
jet tomography region



The eHIJING event generator 1.0

Electron-Heavy-Ion-Jet-INteraction-Generator a completely different (c++ & Pythia8)
program from HIJING (fortran & Pythia6) in the heavy-ion community.

Beams: e/µ, p/A
Large xB (n)PDF

Hard process
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Sample Sudakov

Sample Sudakov

• Almost the same ep physics as Pythia8235.

• Multiple forward scatterings between jet
partons and the cold nuclear medium.

• Nucleon remnants from multiple collisions.

• Modified parton shower algorithm with inputs
from (generalized) higher-twist calculations.

• Lund string hadronization.
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Forward scattering between jet parton and the target

• The differential scattering probability is proportional to the area density of nucleon (ρNL, the
thickness of nuclear matter) times the differential cross-section
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• It is related to the unintegrated gluon distribution φg (xg , k) of
the matter J. Casalderrey-Solana, X.-N. Wang PRC77(2008)024902.

• EHIJING1.0 omits target dynamics and parametrize φg (x , k)

αsφg (xg , k) = K
xλg (1− xg )n

k2 + Q2
s (xg ,Q2)

, xg =
k2

Q2 xB

The form is motivated by the saturation KLN model
NPB594(2001)371 + self-consistent condition Q2

s =
∫
k2 dP

d2kd
2k
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The “screening scale” Qs and the jet transport parameter

• n = 4 and λ = −0.25, same values as the KLN model NPB594(2001)371.

• The jet transport parameter q̂ is directly related to Qs

q̂R =
d〈∆p2

T 〉
dL

weakly-coupled−−−−−−−−−→
dilute medium

∑
T

ρT

∫
k2 dσRT

d2k
d2k =

CR

CA

Q2
s

L
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Poisson sampling of multiple collisions

〈N〉 as function of A & IR cut off.

(0,b)

N2 N3 N4

k1, t1 k2, t2 k3, t3

• The number of collisions follows a Poisson distribution

P(N) =
〈N〉N
N!

e−〈N〉

〈N〉 =

∫
dP

d2k
d2k

• The time of the collision is uniformly sampled in [0, L], the
transverse position is the same as impact parameter b.

• k of each collision is sampled according to dP
d2k .

k+, k− determined by on-shell conditions of the jet parton
and the target parton.
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Multiple scattering =⇒ additional radiative corrections.
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• For a thin medium, radiative correction can be organized in
a twist expansion. A recent calculation at (generalized)
twist-4, Y.-Y. Zhang, X.-N. Wang, PRD105(2022)034015

• eHIJING 1.0 only implements leading-nuclear-size (L+)
terms at (generalized) twist-4 in the soft-gluon limit O
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]

τf =
2x(1− x)p+

(`− k)2
the radiation formation time

• In some literature, the GHT formula is further simplified assuming k� ` under the
integral. This is also implemented in eHIJING for comparison, the HT.
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Medium-modified parton shower

dN (0)

Q2

Λ2

dN (1)

E/L

Q2
s

• Virtuality (`T ) ordered parton shower. Large logs can come from: 1)
vacuum emissions between Λ2 < `2 < Q2. 2) induced emissions
between Q2

s < `2 < p+/L+ WK, I Vitev PLB854(2024)138751

• Multiple emissions sampled by inverting the Sudakov form factor

r = e−〈Nji (`2,`1)〉, r ∼ U(0, 1)

〈Nji (`2, `1)〉 =

∫ zmax(`m)

zmin(`m)
dz

∫ `21

`22
d2`

[
dN(0)

dzd2`
+

dN(1)

dzd2`
Θ(Q2

s < `2)

]

• Medium-induced radiations between Λ2 < `2 < Q2
s no longer gives large logs of energy

scales. Multiple emissions are ordered in formation time.

r = e
−〈N(1)

ji 〉(τ2,τ1)
, r ∼ U(0, 1)
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ji 〉(τ2, τ1) =
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∫ 1

0
dz
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dzd2`
Θ (τ1 < τf < τ2) .
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Lund string hadronization with jet-medium interactions
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• Assume vacuum-like hadronization mechanism at a large
hadron formation time

τh =
zhν

mh

1
Λ
� L

• Color exchanges of multiple scatterings implemented at the
end of shower.

• Medium recoiled system is modeled by a quark + diquark.

• Apply Lund string fragmentation to the whole system of
parton shower + remnant.

• Ongoing test to include hadronic transport for τh < L

(from LBL & UIUC Collaborators)
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Lund string hadronization with jet-medium interactions
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Comparison to SIDIS data



SIDIS in ep

dNh

dzh
=

dσep→h+X/dzh
σep

One of the default hadronization parameter in Pythia8
is changed to better describe the zh dependence.
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SIDIS in ep

dNh

dzhdpT
=

dσep→h+X/dzh/dpT
σep

Good agreement in the TMD region of the pT spectra.
But there are known problems for pT & 1.5 GeV.
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From ep to eA and the nuclear modification factor

0.4

0.6

0.8

1

2 13 24

0.4

0.6

0.8

1

0 1

0.4

0.6

0.8

1

0.8 0.9 1 2 3 4 5 6 7 8 9 10

  He

  Ne

0.6

1.0

0.8

0.4

R
A
πo

10 20

ν (GeV)

0.2 0.6 1

Kr

Xe

z

1 10

Q
2
 (GeV

2
)

π
o

0.1 1

p
t
2 (GeV

2
)

0.4

0.6

0.8

1

10-2 1

RA =
NeA→π0(zh, p

2
T ; ν,Q2)

Ned→π0(zh, p2
T ; ν,Q2)
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/
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HERMES, NPB 780(2007)1-27

• RA is defined as the ratio of the inclusive-normalized SIDIS cross-section.

• The inclusive normalization largely cancels collinear nuclear PDF effects.
The normalization cannot cancel TMD nuclear PDF effects.
eHIJING 1.0 uses empirical collinear nPDF without TMD nPDF modifications.
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Modifications of the collinear distribution of hadrons in eA

HERMES, NPB 780(2007)1-27 〈Q2〉 ≈ 2-2.5 GeV2.

• RA is suppressed at large zh as expected from the parton energy loss in matter.

• The systemic dependence on nuclear size is reproduced.

• With the same input on φg (xg , k), the HT formula in past literature X.-f. Guo, E. Wang,

X.-N. Wang, et al results in a larger suppression than the generalized HT (GHT) result Y.-Y.

Zhang, G.-Y. Qin, X.-N. Wang. Cause of difference is also well understood now 2304.10779.
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Modifications of the collinear distribution of hadrons in eA

CLAS PRC105(2022)015201
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Modifications of the collinear distribution of hadrons in eA

EMC ZPC52(1991)1 〈Q2〉 ≈ 10-12 GeV2.

• RA is suppressed at large zh as expected from the parton energy loss in matter.

• The systemic dependence on nuclear size is reproduced.

• With the same input on φg (xg , k), the HT formula in past literature X.-f. Guo, E. Wang,

X.-N. Wang, et al results in a larger suppression than the generalized HT (GHT) result Y.-Y.

Zhang, G.-Y. Qin, X.-N. Wang. Cause of difference is also well understood now 2304.10779.
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The TMD RA(zh, pT )

HERMES, NPB 780(2007)1-27

• Modifications of the double differential
spectra dN/dz/dpT are reproduced with
the final-state medium effects.

• Note that TMD nPDF effects can also
contribute to RA(pT ) 6= 1 but this effect is
not included in eHIJING 1.0.
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The TMD RA(zh, pT )

CLAS PRC105(2022)015201

• Modifications of the double differential
spectra dN/dz/dpT are reproduced with
the final-state medium effects.

• Note that TMD nPDF effects can also
contribute to RA(pT ) 6= 1 but this effect is
not included in eHIJING 1.0.
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Flavor dependence

• Flavor dependence of RA qualitatively captured.

• Clearly difference of RA between K+ and K−, and
between p and p̄. Not captured by eHIJING 1.0.

• Possible reason 1: missing medium-induced flavor
excitation and flavor conversion.

• Possible reason 2: missing hadronic interactions.
Especially important for proton and low zh hadrons.
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Projection for EIC/EicC

• Regions at various xB and Q2 with Q � Qs .

• A highly differential test of the Q2 and ν = Q2/2xBmN

dependence of the cold nuclear matter effects.
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Some known problems



Global recoil versus dipole recoil schemes

A subtle but important issue as pointed out by one of the referees.

• In parton branching pa → pb + pc , the four-momentum conservation cannot be fulfilled
with on-shell conditions for a, b, c .

• A recoiler system pr is added so that pµa + pµr = (p∗a )µ + (p′r )
µ = pµb + pµc + (p′r )

µ is
always satisfied.

B.Cabouat, T. Sjöstrand EPJC78(2018)226
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Global recoil versus dipole recoil schemes

• Global recoil : recoil system is the rest of the event. Not used in Pythia8 default DIS.
Because It affects Q2 = −(pe − p′e)2.

• Dipole recoil: the recoiler is the parton that form the color dipole with radiator a.

In DIS, the color dipole stretch from initial to final-state. Two possibilities:

• FI: final parton is the radiator, initial parton is the recoiler.

• IF: initial parton is the radiator, final parton is the recoiler.
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Global recoil versus dipole recoil schemes

• Global recoil : recoil system is the rest of the event. Not used in Pythia8 default DIS.
Because It affects Q2 = −(pe − p′e)2.

• Dipole recoil: the recoiler is the parton that form the color dipole with radiator a.

In DIS, the color dipole stretch from initial to final-state. Two possibilities:

• FI: final parton is the radiator, initial parton is the recoiler.

• IF: initial parton is the radiator, final parton is the recoiler.

? Pythia8 default DIS mode only implements IF radiation, because IF alone already
reproduces the singular structure of the NLO matrix-element calculations! B.Cabouat, T.

Sjöstrand EPJC78(2018)226
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Global recoil versus dipole recoil schemes

• Global recoil : recoil system is the rest of the event. Not used in Pythia8 default DIS.
Because It affects Q2 = −(pe − p′e)2.

• Dipole recoil: the recoiler is the parton that form the color dipole with radiator a.

In DIS, the color dipole stretch from initial to final-state. Two possibilities:

• FI: final parton is the radiator, initial parton is the recoiler.

• IF: initial parton is the radiator, final parton is the recoiler.

!!! But eHIJING 1.0 uses the non-standard global recoil. This is because in the modified
splitting function P(z) = Pvac(z)+Pmed(z), Pmed(z) is a final-state effect, which cannot
be treated as IF-type radiation. A lot more technical problems to be solved!
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The impact of using Global versus dipole recoil in ep

• Q2 can be changed by global recoil. Should be negligible at large Q2.

• Global recoil affects TMD observables and the match to fixed-order calculation.

• In the lab frame, the difference between
global/dipole recoil is small. Because pT is
dominated by the hard scattering.

• In the Breit frame, evident discrepancy between
different recoiling scheme beyond pT = 1-2 GeV.

Be careful when interpreting nuclear modifi-
cations at large pT ,Breit in EHIJING 1.0.
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Summary and prospects

Beams: e/µ, p/A
Large xB (n)PDF
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Sample multiple
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Modifies
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Sample Sudakov

• The first publication of eHIJING 1.0. Aims at DIS in the
tomography region.

• The physics: multiple collisions, modified splitting
functions and parton shower, Lund string hadronization.

• Systematic comparison to SIDIS data at EMC,
HERMES, and CLAS, with projections at EIC and EicC.

• Known problems with gloabl recoil in DIS. Lack target
dynamics and hadronic interactions.

• Collaboration with SDU (Z. Jian and Y. Shi) to
interpolate event generation from tomography region to
small-x region.
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Questions
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Things to look at in eHIJING

• Use target neutron emission to select on
different path length of jet propagation in the
cold nuclear matter Li, Liu Vitev, 2303.14201

• Lepton-jet correlation (high precision ep

baseline to study nuclear effects), Fang, Ke, Shao,

Terry 2311.02150.
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The ideal region for studying parton transport in matter

• Hard vertex is localized τH ∼ ν/Q2 � L (large xB).

• Hadronization outside the nucleus: τh ∼ zhν/ξ
2 � L.

• Naturally set the scale sepration for an EFT

Q2ξ2 . ξ2 Lλg
ν/L

Semi-inclusive DIS in eA

L

λgQ

ξ

zν

(1− z)ν

ν
zhν, pT

N1

? To suppress hadronic final-state interactions, we want zhν � ξ2L ∼ 3...4 GeV for Pb.
Collider experiment has a larger ν, and is cleaner for studying partonic transport.
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