

eRD107: Longitudinally separated Forward HCal (LFHCal)

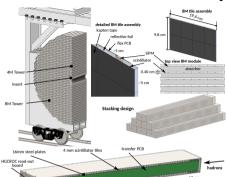
August 28, 2024

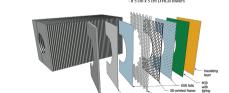
Friederike Bock (ORNL) for the eRD107 consortium

Participating institutes: ORNL, BNL, FNAL, ISU, GSU, Yale, UCR, UTK, UTA, Valpo, Debrezen

The General Idea

Concept:

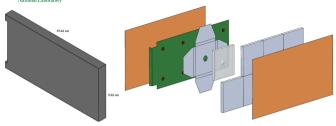

- CALICE AHCal inspired Fe-Scintillator calorimeter with SiPM on-tile-readout (modification since last review)
- Two main parts:
 - ► LFHCal built mostly out of 10x20x132 cm³ 8M modules (modified length to accommodate larger amount of services in barrel)
 - ▶ Insert built out of 2 halves surrounding the beam pipe


LFHCal:

- ► 60 layers of steel interleaved with scintillator material
- ► Transverse tower size 5x5 cm²
- Multiple consecutive tiles summed to 7 longitudinal segments per tower

Insert:

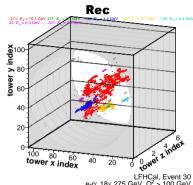
- ▶ 60 layers of steel interleaved with scintillator
- ► Hexagonal tiles of 8 cm² each read-out individually

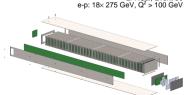


LFHCal 8M Scintillator Tile assembly

2/17

- Tiles of $\approx 0.4x5x5$ cm³ with dimples individually wrapped in ESR foil assembled in a grid of 4x2 tiles
- 8 tiles are backed by a flexible PCB equipped with 8 SiPMs and LEDs sandwiched with Kapton foil
- Flexible PCB wrapped around side of absorber to connect with long PCB along the side of the module
- Tiles either injection molded or machined out of cast sheets





Read-out LFHCal & insert

3/17

- High granularity needed to try to distinguish shower maxima close to beam pipe
- LFHCal: read out in 7 layers longitudinally (5 or 10 SiPMs summed) desirable min measurable tower energy 3-5 MeV, max 20-30
- insert: read out every single tile desirable min measurable tower energy $\sim 0.1-0.5~\text{MeV}/$ tile
- SiPMs mounted to flexible PCBs, passive signal transfer to back side of calorimeter using long transfer PCB
- 1 SiPM-HGCROC (up to 70 channels) per 8M module (56 channels) in the back, 320 HGCROCs for insert readout

GeV in single tower segment

eRD107 - Progress - executive summary

4/17

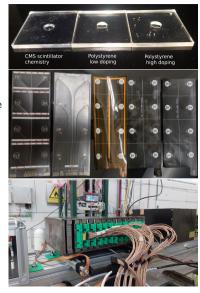
Reconstruction optimization

- ► Realistic implementation of geometry in ePIC software stack
- ► ML assisted absorber optimization in full geometry setup

Prototype tile production using machining & injection molding

- ► Ongoing machining studies for tile production
- First tile production with injection molding at Fermilab with different tile chemistries

3 Tile Characterization

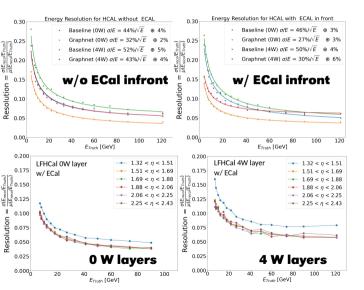

- Light yield studies of machined & injection molded tiles with different dimple sizes, machining techniques and wrappings ongoing
- ► Position scan of response on-going

Sensor board development

- ► Third iteration of sensor board produced in three different processes
- ► Tests of calibration circuits ongoing

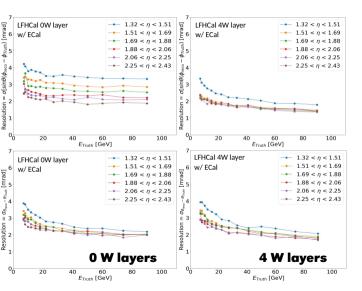
Preparations for 2024 TB-campaigns & 2023 TB analysis

- ► Test beam analysis from Sept. & Oct. 2023 on-going
- All components for test beam campaign ordered and on time for being tested ahead of time



August 28, 2024

Reconstruction optimization



- Implementation of realistic geometry in ePIC software stack
- First version of clusterization algorithm working well at high E
- Absorber optimization with ML assistance and full software compensation
 - Software compensation with full detector system optimized with graphnet-algorithmn
 - ► Improved *E*-resolution w/o tungsten layers
 - Little impact on spatial resolutions w/ or w/o tungsten layers
 - ⇒ Tungsten layers removed & replaced with steel

Reconstruction optimization

- Implementation of realistic geometry in ePIC software stack
- First version of clusterization algorithm working well at high E
- Absorber optimization with ML assistance and full software compensation
 - Software compensation with full detector system optimized with graphnet-algorithmn
 - ► Improved *E*-resolution w/o tungsten layers
 - ► Little impact on spatial resolutions w/ or w/o tungsten layers
 - ⇒ Tungsten layers removed & replaced with steel

Scintillator Characterization - Test Stands

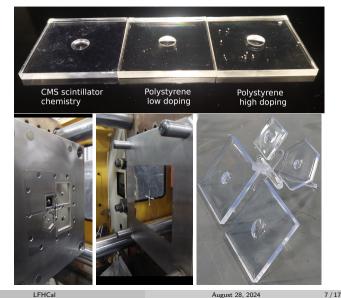
Yale

• Three parallel test setups for tile characterization (Yale, ORNL, Valpo)

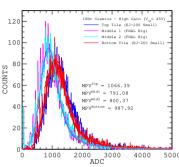
- 3D-printed tile and assembly holders developed for effective tile scanning
- Yale setup extended for X Y scanning of tiles
 - $ightharpoonup 1^{st}$ version with slotted X Y scanning option
 - ▶ 2^{nd} version fully automated X Y scanning stage
- Yale setup further extended to do automated measuring of machined tile sizes
- Further test stands being setup at GSU

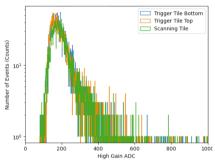
ORNL

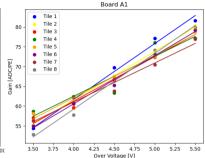
LEHCal


(a) Liebtatisht Faraday box with connector nanel

Tile production R&D


- First larger scale injection molding production by Fermilab with 3 different chemistries
- Additional scintillator machining studies on the way
- Produced tiles with different dimple sizes
- Additional production to come in the coming months to equipp August test beam modules





Scintillator Characterization & Optimization

- Started measuring cosmics MIP light yields for different SiPMs types
 - ▶ 1.3 × 1.3 mm
 - ightarrow pprox 12 14 p.e. for machined tiles
 - $\rightarrow~\approx 11-13$ p.e. for injection molded tiles,
 - ▶ 3 × 3 mm
 - $ightarrow \approx 60-76$ p.e for machined tiles

- Testing different scintillator materials (EJ-200, BC-408 & Fermilab injection molded with different chemistries)
- Sytematic evaluation of impact of machining defects ongoing and large scale sample on-going
- Single photon spectra for every SiPM of the TB assemblies vs V_{ov}

LFHCal: Test beams 2023

9/17

Dates:

SPS: 6th - 13th Sept.
PS: 11th - 18th Oct.

Setup:

- Parasitic to FoCal-H/FoCal-E at SPS and PS
- Setup consists out of maximum 14 layers of 8M tile assemblies

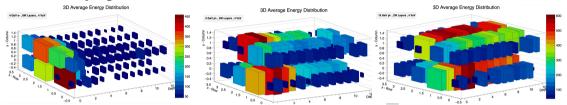
Sept: w/o absorber layers

Oct: w/ absorber layers (4 tungsten, 10 steel)

 Read-out: CAEN DT5202 64ch CITIROC SiPM readout unit or H2GCROC

Main expected measurements:

- Light yields per tile
- Shower profile measurements with different absorbers
- Cross talk estimates of different tiles
- Use it as testing setup for SiPM-H2GCROC
- If placed behind FoCal-H, measure part of leakage

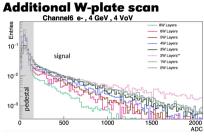


LFHCal TB 2023: Data obtained - CAEN read-out

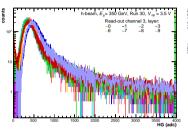
October campaign

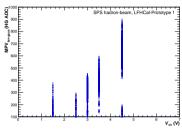
September campaign - Hodoscope setup

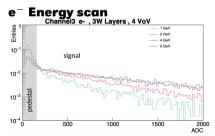
- Full V_{ov} scan e⁻/h
- Gain-scan
- Position scan
- Possibly leakage measurement of FoCal-H

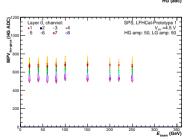

October campaign - mini-LFHCal

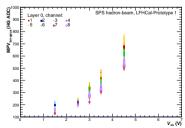
- Full V_{ov} & gain scan e^-/π^-
- Position scan
- Scan with additional W-plates upfront (e⁻)
- e⁻ shower development (1-5 GeV)
- π^- shower development (5,10,15 GeV)

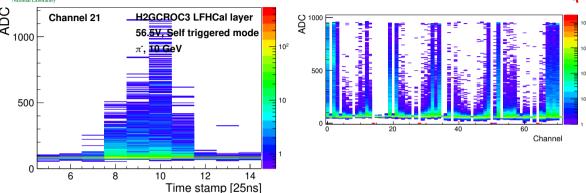



LFHCal TB 2023: First results - CAEN read-out






MIP response for scintillators



LFHCal TB 2023: First results - H2GCROCv3a

12 / 17

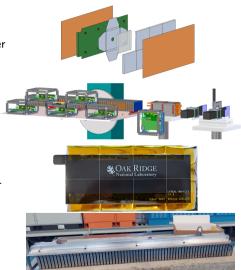
- H2GCROC read-out ready just in time for last 1.5 days of data taking (Oct.)
- Self-triggered data obtained
- Unfortunately externally triggered setup couldn't be operated due to beam stop of PS during last night
- New prototype board on time for delivery for testing significantly ahead of TB

F. Bock (ORNL) LFHCal August 28, 2024

Test beam plans - August 2024

Dates: 28th Aug-11th Sept **Location:** PS - T09

Main purpose: First full module test & H2GCROC tests

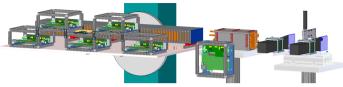

Setup:

 Full 8M module testing 65 layers of absorber & scintillator per layer 8 channels (swapping scintillator geometry either 8M module or insert)

- Readout with multiple CAEN DT5202 64ch CITIROC SiPM readout units (2nd week) and H2GCROCs (1st week)
- Had to be postponed from May to August due to delays in deliveries of components & new H2GCROC firmware and boards tested during the ALICE FoCal TB in May

Main expected measurements:

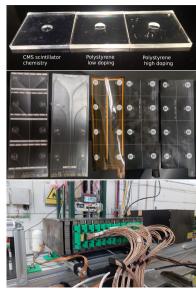
- Energy resolution estimates for hadrons and electrons for full length module with both read-out versions
- Assessment of longitudinal leakage
- Longitudinal shower development
- Read-out validation
- Part of campaign with EEEMC in front

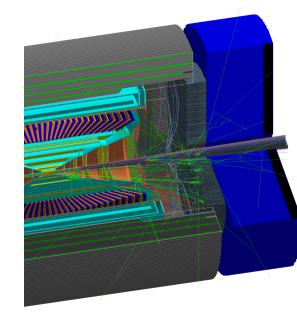


Test beam preparation

14 / 17

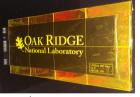
- 3rd iteration of SiPM-carrier board developed and produced in 3 different processes
- Full testing and taking of calibration data for all 85 prepared layer assemblies at ORNL
- First version of short long-transfer board produced and tested in cosmics data taking
- First full 8M absorber assembly produced and currently being setup in T09 with all components
- Full read-out chain tests performed for both read-out versions at ORNL
- Test beam starts today

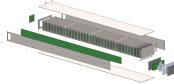



eRD107 - Progress - executive summary

- ① Reconstruction optimization
 - ► Realistic implementation of geometry in ePIC software stack
 - ► ML assisted absorber optimization in full geometry setup
- Prototype tile production using machining & injection molding
 - ► Ongoing machining studies for tile production
 - First tile production with injection molding at Fermilab with different tile chemistries
- 3 Tile Characterization
 - Light yield studies of machined & injection molded tiles with different dimple sizes, machining techniques and wrappings ongoing
 - ► Position scan of response on-going
- Sensor board development
 - ► Third iteration of sensor board produced in three different processes
 - ► Tests of calibration circuits ongoing
- Preparations for third TB-campaign (Aug 2024) & TB analysis
 - ► Test beam analysis from Sept. & Oct. 2023 on-going
 - ► Currently setting up in PS beam line, TB starting today

Thanks!




Reminder: eRD107 FY24 Plans & Milestones

- Tile production optimization using machining & injection molding (04/24)
 - ► Evaluation of different scintillator machining techniques
 - Comparative review of different vendor capabilities regarding adherence to tolerances as well as optimizing the light yield and its stability for large number of tiles
 - Documentation of procedures for optimizing the light yield of injection molded tiles during the production process
 - ► High quality prototype tiles to equip two 8M modules for test beam studies
- Reconstruction optimization (09/24)
 - ► Write-up of optimization results from simulations
- Sensor board development (03/24)
 - ► First prototype of sensor board for Si-PM readout (together with eRD109)
- Test module assembly (04/24)
 - ► First prototype of full 8M module
- Tile Characterization (08/2024)
 - Write-up of test bench & test beam measurement for all assembled tile-prototypes
 - ► First concept of a monitoring system to be installed in the LFHCal

