HPK vs BNL AC-LGAD Sensors

ePIC AC-LGAD TOF DSC Weekly Meeting

Shirsendu Nanda

BNL-IO

Choice of operating voltage:

- Leakage current vs. bias voltage, and noise (from all channels) vs. bias voltage
- Find the bias voltage where the noise begins to increase. Sensor is operated at 1-2 volts below that bias voltage.
- At the same time keep a check on the leakage current (sensor not operated at very high current)

Systematic Study of Sensor Performance: Strip

Name	Wafer	Pitch	Strip length	Metal width	Active thickness	Sheet resistance	Capacitance	Optimal bias voltage	
		(µm)	(mm)	(µm)	(μm)	(Ω/\Box)	(pF/mm^2)	(V)	
SH1	W9				20	1600	600	114	
SH2	W4					400	240	204	
SH3	W8			50	50	400	600	200	
SH4	W2	500	10		00	1600	240	180	HPK 50 um thick
SH5	W5					1000	600	190	
SH6	W9			100	20	1600	600	112	
SH7	W8			100	50	400	600	208	
			_						
SB1	WB1			50	50	1400	270	170	BNL 50 um thick, higher capacitance
SB2	WB1	500	10	100	50	1400	270	160	_
SB3	WB2			50	50	1400	260	185	BNL 50 um thick, lower capacitance

SH7

SB1

Spatial resolution in AC-LGADs:

HPK Strip : 10 mm length, 500 μm pitch, 50 μm metal width, 1600 Ω/□ resistivity, and 240 pF/mm² capacitance

- Signal sharing between strips enables the *x* position reconstruction
- Amplitude fraction f = a1 / (a1 + a2)where a1 and a2 are the leading and sub-leading strip amplitudes
- Two-strip reconstruction at gap and onestrip reconstruction on metal

- Efficiency reaches ~100%
- Two-strip resolution $\sim 12 15 \ \mu m$
- One-strip resolution $\sim 40 \ \mu m$ on metal

Time resolution in AC-LGADs:

HPK Strip : 10 mm length, 500 μ m pitch, 50 μ m metal width, 1600 Ω/\Box resistivity, and 240 pF/mm² capacitance

Frack y position [mm]

-2

- Due to larger electrodes, distant signals arrival ٠ with delays O(100 ps)
- Position-dependent time delay correction is ٠ essential, using the external tracker
- Delay map use the resolution of 50 μ m for x ٠ position and 200 µm for y position
- $a_1^2 t_1 + a_2^2 t_2$ Multi-channel time stamp, $t_{\rm reco} =$ ٠

ps]

- Without delay correction, the time resolution $\sim 45 - 55 \text{ ps}$
- Adding the tracker-based delay corrections improves the resolution to $\sim 35 - 42$ ps
- Using multi-channel timestamp with delay correction, time resolution $\sim 34 \text{ ps}$

Test Beam Results on Strip Sensors (BNL vs HPK): 50 um thick, 50 um metal width and 500 um pitch

Summary

- HPK (SH2, SH3, SH4, SH5):
 - Higher n+ resistivity = less charge sharing = higher signal amplitude = less jitter = better timing resolution
 - Higher AC-coupling capacitance = less charge sharing = higher signal amplitude
- HPK vs BNL (SB1, SB3)
 - Amplitude and resolution of BNL sensors similar like lower resistivity (C-type) HPK sensors
 - Signal amplitude, timing and position resolutions of HPK sensors are much better than BNL-IO sensors

Systematic Study of Sensor Performance: Pixel

Name	Wafer	Pitch	Metal width	Active thickness	Sheet resistance	Capacitance	Optimal bias voltage	
DU1	WD1							
	WP1	510	500	20	1600	600	100	
	WP2	510	500	50	1600	600	140	
PH3	WP3			50	1000	000	190	
PH4	W11			20	400	600	116	HPK 20 um thick square
PH6	W8	500	150	50	400	600	200	
PH7	W5	500		50	1600	600	185	
PH8	W9		300	20	1600	600	112	
				BNL 20 um thick				
PB1	WP4	200	100	20	1400		76	Small Square
PB2	WP4	500	200	20	1400	695	80 -	Large Square
	1		BNL	4 x 4 Squar	red Circle pixel	1	L	
PB3	WP4	500	110(*)	20	1400	695	85	Squared circle
	-	1		BNL 4 x 4 (Cross pixel	1		-
PB4	WP4	500	400×25(**)	20	1400	695	80 -	
			·	BNL 30 um thick				
PB5	WP5	200	100	30	1400	385	115	→ Small Square
PB6	WP5	- 500	200	30	1400	385	115	I arge Square
			1	Luige Square				
PB7	WP5	500	110(*)	30	1400	385	110	Squared circle
	1	I	1					
PB8	WP5	500	400×25(**)	30	1400	385	115	

PH4

PB4

(*) diameter of the circular metal pad

(**)sensor pads form a cross shape with two metal strips that are 400 µm long and 25 µm wide

HPK Pixel : 500 x 500 μm pitch, 20 μm thickness, 150 μm metal width, 400 Ω/□ resistivity, and 600 pF/mm² capacitance

- Larger signal size in metal pads compared to gap region
- Faster signals in metal pads and relatively slower in gap region
- For each event, the amplitude from two channels in column has been added to enhance the charge sharing in gap regions
- Two-channel efficiency ~ 1 in gap region and suffers in metal region

Test Beam Results on Pixel Sensors (BNL vs HPK): 20 um thick, 500 X 500 um pitch with different metal width

Summary

• BNL 20 um (PB1, PB2, PB3, PB4)

- PB1 and PB3 have significantly smaller signal size
- BNL pixel sensors with smaller signal size not able to achieve 100% efficiency across the surface
- Poor timing resolution in the gap region and poor position resolution on metal pad

• HPK 20 um (PH4) vs BNL 20 um (PB1, PB2, PB3, PB4)

• Signal amplitude, efficiency, timing and position resolutions of HPK sensors are much better than BNL-IO sensors

Test Beam Results on Pixel Sensors (BNL vs HPK)

- HPK 20 um (PH4) vs BNL 20 um (PB1, PB2, PB3, PB4)
 - Signal amplitude, efficiency, timing and position resolutions of HPK sensors are much better than BNL-IO sensors
- HPK 20 um (PH4) vs BNL 30 um (PB5, PB6, PB7, PB8)
 - Efficiency, timing and position resolutions of HPK sensors are better than BNL-IO sensors Ο
 - Cross sensor (PB8) performance is similar like PH4 Ο
 - Slightly worse timing resolution due to larger Landau term in PB8 Ο
 - PB8 position resolution (140um) at the metal worse than PH4 (60um). Unclear if this can be improved

Extra slides

BNL Pixel Sensors (500 x 500 um pitch): 30 um thick

BNL Pixel Sensors (500 x 500 um pitch): 30 um thick

BNL and HPK Pixel Sensors (500 x 500 um pitch): Two-column Efficiency

