Effect of Material on electron measurements in eEMCal (PWO). Simplified Studies

A.Bazilevsky

For ATHENA-Calorimetry Discussion August 30, 2021 For ATHENA-Tracking Discussion (updated) August 31, 2021 For ECCE-Calorimetry Discussion (updated) September 28, 2021

From my presentation for YR-Calorimetry, Jun 30, 2020

Original electron reaches EMCal with part of its energy radiated

Long and flat tail towards lower energy

A lot of soft particles, mainly photons

No PID detectors No support/service material

TPC

Making setup simpler

1 GeV/c electron

EMCal (>20 MeV) hncl 0 hncl 0 Entries 98649 Mean 1.26 Std Dev 0.4912 Underflow Overflow Integral 9.865e+04

6

~40% of events with >1 particle hitting the EMCal (>20 MeV)

¼ of events with >1 cluster (> 20 MeV)

8

10

Making setup simpler

Energy is not lost for the thickness <0.5*X0 (Consistent with EM shower long. profile)

But energy gets redistributed in the EMCal (Electron + radiated γ and e⁺e⁻)

For the material of <0.5*X0, no energy is missing

The key question is how well we can reconstruct/associate the energy related to original electron

2 GeV/c electron

eReco in EMCal with material on the way

Single 2 GeV electrons simulation with ~5% material on the way to EMCal

Quantifying the effect

From my presentation for YR-Calorimetry, Jun 30, 2020

Now, do the same in the following

Associated cluster vs energy sum

Eff loss vs p

Single (track associated) cluster doesn't represent well the electron energy, particularly at low momenta

Need to combine electron cluster with accompanying radiation (including very low energy one)

Energy sum: cluster threshold effect

A lot of low energy radiated photons => sensitivity to energy threshold

Minor effect at p>5 GeV/c Sharply increasing effect at p<2 GeV/c

Need to measure photons to as low energy as possible (down to 20-50 MeV)

Radiated photons are not everywhere

From my presentation for YR-Calorimetry, Jul 14, 2020

No PID detectors No support/service material

May not be able to sum up the cluster energy in the whole EMCal (will pick up not related energy)

But we may not need to: the radiated photons are distributed in arcs at pseudorapidity of the parent electron

Radiated Photon Topology Cut

Just a very simple cut:

 $\Delta \eta$ =±0.2 window leads to small enough eff loss

 $\Delta \varphi$ =±0.5 doesn't introduce any losses

Smarter technique for radiated photon ID may provide better performance

Vs converter thickness

Summing up the energy in the vicinity of the electron rapidity $(\Delta \eta = \pm 0.2)$ recover the eff well up to 10%X0 thickness

20

Vs rapidity (Bdl)

η=1.5 vs 2.5: A factor of 3 larger Bdl ~10% larger material thickness

Lager eff loss for larger Bdl

2m Vs location Eff loss vs p Eff loss vs p Absorber Collision **EMCal** 10% X0 50cm 100cm Point 0.3 0.3 Associated cluster energy ΣEcl, no material (baseline) 0.2 0.2 Σ Ecl with Ecl>50MeV ΣEcl with Ecl>50MeV and $\Delta \eta$ =±0.2 0.1 0. ᅇ 20 p (GeV/c) 10 15 5 20 10 15 5 Closer to EMCal p (GeV/c) smaller the eff loss Eff loss vs p Eff loss vs p 0.3 0.3 190cm 150cm 0.2 10cm in front 0.2 of the EMCal 0. 0. 20 p (GeV/c) 15 10 20 p (GeV/c) 10 5 15

Vs magnetic field

All my previous plots are for 1.5T solenoid

Lager eff loss for larger Bdl

Eta=-1.5, p=1 GeV, B=1.5T

The worst case: Highest Bdl, lowest e momentum

Baseline (for no-material) subtracted

Eta=-1.5, p=1 GeV, B=3T

The worst case: Highest Bdl, lowest e momentum

Baseline (for no-material) subtracted

Low energy photons

Low energy photon measurements (down to 100 MeV?) may impose tougher requirements:

High probability for a converted photon to be lost (too low energy e+e- to reliably track)

7%X0 => 5% photons converted (lost?)

Low energy (shallow) shower => more energy absorbed on the way

May require <30%X0 in front of EMCal (because of energy loss in it)

Summary for PWO-like EMCal in e-endcap

- Electron reco from associated cluster leads to sizable eff loss even for 5%X0 absorber
 - \Rightarrow Need to include clusters from radiated photons
- EMCal should be capable to measure radiated photons down to at least 50 MeV (or, better, down to 20 MeV)
 => The level of noise should be minimized
- Effect of material after electron reco:
 - Larger for larger Bdl
 - Increases from high to low p
 - ~5%X0 acceptable within 100 cm from the vertex
 - ~20%X0 acceptable if at ~150cm (within 50cm from EMCal)
 - Minimized if just in front of EMCal (up to 50%X0 is tolerable)
 - Low energy photon measurement requirements may be tougher:
 <10%X0 on the way and <30%X0 just in front (within 10cm) of EMCal
- For lower resolution EMCal, the material limitations are relaxed
- More developed techniques for e-reco (plus rad. photons) and considering other backgrounds may modify the conclusions in some way 18

These limitations are exclusive

Decay γ from PYTHIA

Fraction of events with decay photons in the vicinity of DIS electron: $\Delta \eta = \pm 0.2$ $\Delta \varphi = \pm 0.5$

The contribution of decay photons within topology cut (used for radiated photons) may be kept at low enough level

The other backgrounds need to be evaluated too (e.g. synchrotron rad.)

2sigma vs 3sigma

Eta= -1.5 vs -2.5

23

2m

PYTHIA: e& γ rapidity density

For $\Delta \eta = 0.2$ the probability to have a shower from e or γ may be >10%

Electron radiated energy

Fraction of electrons loosing:20% of its energy50% of its energy

0.2

X/X0

Photons 0.1 GeV

