sPHENIX experience with KFParticle

Cameron Dean Massachusetts Institute of Technology EPIC reconstruction meeting July 16th 2024

7/16/24

Overview

- sPHENIX is a dedicated heavy-ion experiment at RHIC
 - Assume most people are familiar with sPHENIX so will only highlight key features
 - All trackers capable of streaming readout
 - Calorimeters don't stream
 - No PID (in initial design)
- KFParticle has been integrated into sPHENIX framework
 - Most of the work done during the start of the pandemic in 2020
 - Core mechanics remains the same
 - sPHENIX wrapper to account for no PID

Simulated b-hadron reconstruction with KFParticle at sPHENIX

The sPHENIX detector

Decay Parser

Parser uses TDatabasePDG table, anything ROOT understands, we can understand!

Decay Topology

Prompt/non-prompt separation

- Automatic calculation of DCA and 2D DCA allows for prompt/nonprompt separation
 - Can also be used with other variables (decay length, pointing angle) to improve purity

Resonance tagging

Mass resolution

Outputs

- 2 output options at sPHENIX
 - nTuple, allows for immediate analysis
 - Container creation
- Containers allow us to store candidate for later use
 - Can run during file production
 - Can be used for triggering (by checking the container is not empty)
 - Can interface with down stream analysis (particle flow)
 - Can be passed to QA for run-by-run checks
- All 4 uses of containers have been tested at sPHENIX

Real reconstruction at sPHENIX

- KFParticle was deployed at sPHENIX on a short run using just our TPC
 - Collected about 210,000 events
 - TPC was uncalibrated
 - No primary vertexing was performed

Real reconstruction at sPHENIX

Top left – Reconstructed K^0_s pT spectrum Bottom left – Number of reconstructed tracks per event Top right - Λ^0 η/φ distribution

Conclusion

- KFParticle is successfully deployed at sPHENIX
 - Made some interesting wrapper choices to overcome no a priori PID
- General package infrastructure is easy to use
- Next steps:
 - Full charm reconstruction
 - Applying to new areas of our heavy flavor program:
 - Development of a generic secondary vertex tagger
 - Started on Monday
 - Also performs PV reconstruction
 - Requires no exclusive decay information (independent of number of tracks from SV)
 - Preliminary (last night) results: ~95% efficiency for selecting charm decay tracks away from PV
 - Around 10 to 30% rejection of primary tracks (next focus is to improve primary rejection to 80+ %)