

Aerogel Refractive index study

Luisa Occhiuto, Chandradoy Chatterjee, University of Calabria & INFN Cosenza, INFN Trieste

REQUIREMENTS FOR AEROGEL AND FOR THE GAS

Performance Comparison of Aerogel Type-1 (n=1.026)

Gain in performance (wrt baseline), 3.5-4 GeV/c more!

Significantly larger number of photons, ~ 1.5 times more Nph!

Performance Comparison of new Aerogel Type-1 (n=1.026)

New type-1 Aerogel provides ring resolution capable to perform PID ~ 18-19 GeV (@eta=2.0)

Performance Comparison of Aerogel Type-2 (n=1.03)

@ η =2.0 we achieve 3σ with ~ 17 GeV/c of momentum for the aerogel. We gain 1-2 photons more.

Aerogel Refractive Index = 1.03

Performance: NPE and Resolution vs η

Performance: NPE and Resolution vs η

Performance: N σ Separation

COMPARISON SPE TYPE-1 vs TYPE-2

COMPARISON RING TYPE-1 vs TYPE-2

COMPARISON RING TYPE-1 vs TYPE-2

Performance: NPE and Resolution vs η

GAS

luisa.occhiuto@cern.ch

8

SUMMARY

Type-1 (n=1.026)

- > N σ up to ~18 GeV/c
- > Npe ~ 15 @ η = 2.0 for thickness=4 cm and NPE ~ 20 for thickness= 6 cm
- Ring resolution as expected ~ 0.45 mrad
- > Single photon resolution (SPE) ~ 1.78 mrad

Type-2 (n=1.03)

- > N σ up to ~17 GeV/c
- > Npe ~ $16 17 @ \eta = 2.0$ for thickness=4 cm and NPE ~ 21 - 22 for thickness= 6 cm
- Ring resolution as expected ~
 0.45 mrad for thickness=4 cm
 but 0.43 for thickness = 6 cm
- Single photon resolution (SPE) ~ 1.92 mrad

THANKS!

Performance: N σ Separation of π AND K

- ✓ Momentum \rightarrow **[1.0, 21.0]** GeV/c in steps of 2 GeV/c.
- ✓ Pseudorapidity $(\eta) \rightarrow [1.5, 2.0], [2.0, 2.5], [2.5, 3.5].$
- Evaluation of the separation between pions and kaons as a function of the particle momentum with:

Performance: N σ Separation of π AND K

φ=0, η=2.0 φ=0, η=2.5 Ь 10² . . . • . 10 . . . Estimated Cherenkov Angle for Aerogel . theta dist Aerogel 992 160 Entries 0 2 10 12 16 18 20 22 14 20 22 2 4 6 8 10 12 14 16 18 Mean 240.1 Momentum [GeV] Momentum [GeV] Std Dev 1.152 140 γ^2 / ndf 39.82 / 26 0.04066 Prob 120 161.1 ± 6.7 Constant Mean value 240.3 ± 0.0 100 Sigma 0.4607 ± 0.0118 80 Cerenkov angle $\theta \approx 0.240 \ rad \approx 13.7^{\circ}$ for 60 F $\eta = 2.0$ and p=15 GeV 40 20 0 L_L 230 248 250 238 240 242 244 246 232 234 236

þ

10²

10

0

13

0 [mrad]

Aerogel Refractive Index = 1.03

Aerogel Refractive Index = 1.03

Performance: RESOLUTION

π+, φ=0, **η=2.0**

Aerogel Refractive Index = 1.03

Performance: NPE

π+, φ=0, **η=2.0**

π+, φ=0, **η=2.5**

Performance: N σ Separation of π AND K

Performance: Resolution

Aerogel Refractive Index = 1.03

π+, φ=0, **η=2.3**

π+, φ=0, η=3.5

Aerogel Refractive Index = 1.03

Performance: NPE

π+, φ=0, **η=2.3**

π+, φ=0, **η=3.0**

π+, φ=0, **η=3.5**

Performance: Hits position

Aerogel Refractive Index = 1.03

Performance: Hits position

Aerogel Refractive Index = 1.03

luisa.occhiuto@cern.ch

7