dRICH Status

Marco Contalbrigo INFN - Ferrara

ePIC Meeting, Lehigh University, July 25th 2024

ePIC Requirements

Main challenges:	
Cover wide momentum range 3 - 50 GeV/c	-> dual radiator
Work in high (~ 1T) magnetic field	-> SiPM
Fit in a quite limited (for a gas RICH) space	-> curved detector

Electrons and Photons π/K/p Nomenclature η Resolution Min E PID p-Range Separation σ_F/E Photon 1.0 to 1.5 1.5 to 2.0 2%/E 3σ e/π ⊕ (4*-12)%/√E 2.0 to 2.5 Forward Detectors 50 MeV ≥ **3**σ up to 15 GeV/c ≤ 50 GeV/c **⊕**2% 2.5 to 3.0 3.0 to 3.5

Essential for semi-inclusive physics due to absence of kinematics constraints at event-level

. .

Ľ

TDR Effort in 2024

	Project plan / In-kind											
	Preliminary specs and text layout			1st draft				2nd draft			pre-TDR	
	February	March	April	May	June	July	August	September	October	November	December	
Plan												
Preliminary specs / TDR layout												
TDR Drafts												
Project Plan												

- ✓ April: Preliminary specs & text layout
 Project plan / in-kind preview
- July: 1st draft
 - October: 2nd draft
 - December: Pre-TDR

Assumptions: Pre-TDR (CD2) required at the end of the year Scheme driven by manpower/lead time: remains the same for a TDR (CD3) Extra-time needed fo real-scale mechanics & RDO demonstrators

ePIC dRICH

Acceptance: minimize material budget with the use of composite materials CFRP skins + honeycomb sandwich (~1 %) for windows, 1 cm bulk CFRP (~ 4 %) for round vessel

Interferences: material budget concentrated beheind the barrel ecal and its support ring readout electronics designed in order to minimize the detector box volume

Integration

Real scale prototype

Detector box integration

dRICH split model

Vessel

Program towards TDR:

- ✓ 2024: Real scale prototype
- ✓ 2025: Inner structure & support
- ✓ 2025: Detector box & services

Custom shell & Standard CFRP laminate foils

Executive

dRICH Photo-Detector

SiPM array

ALCOR chip

Photon Detector Unit (PDU):

Compact to minimize space

- 4x Hamamatsu S13361-3050HS SiPM arrays
- 4x Front-End Boards (FEB)
 - 4x ALCOR chip (ToT discrimination)
 - 4 x Annealing Circuitry
- 1x Read-Out Board (RDO)
 - 1x Cooling plate (< -30 C)

Active area is shaped to resemble the focal surface and best exploits the focalization

Detector box:

- Shaped to fit the space
- Quartz window
- Cooling for sensors and electronics
- Power distributing patch panel
- Heat insulation

Detector Prototype

empty readout box with PDU housing and monitor thermocouples

Successful campaign:

Mixed hadron beam 2-11 GeV/c

Various aerogel samples (1.020-1.026)

Two gas radiators (C_2F_6 , C_4F_{10})

Two SiPM working points (-40 C and -20 C)

Many optical fiters

Two tracking systems (GEM & SciFi)

Beam line Cherenkov tagging

Temperature monitor

2024 Test-beam Program

Successful campaign:

Mixed hadron beam 2-11 GeV/c

Various aerogel samples (1.020-1.026)

Two gas radiators (C_2F_6 , C_4F_{10})

Two SiPM working points (-40 C and -20 C)

Many optical fiters

Two tracking systems (GEM & SciFi)

Beam line Cherenkov tagging

Temperature monitor

Photo Sensors

ALCOR v3

Improvements

ALCORv64 digitazing chip

2.552 2.554 2.556 2.558 2.560 2.562 2.564 2.566 Timestamp [s]

5

1e-7

Readout Components

SiPM carrier board with 256 channels and flex connector circuits.

Readout Board to configure and connet to the back-end

MasterLogic card to control SiPM bias voltage & monitoring service

Readout & Services

Streaming Data-Acquisition

Goals: Maximise modularity (detector shaping) and capability (data stream)

Gas Radiator

Gas characterizaiton & optimization (synergy with AMBER/CERN)

Deuterium UV lamp, Monochromator system, 1.6 m column for gas transparency measurement

Program towards TDR:

- ✓ 2024: Validated with prototype
- ✓ 2024: Transparency in UV
- ✓ 2025: Transparency in visible & near-UV
- ✓ 2025: gas system project

Aerogel Radiator

Aerogel Radiator

Aerogel characterization & optimization (synergy with ALICE3)

ePIC simulations

Program towards TDR:
✓ 2024: Validate n > 1.025
✓ 2024: Increase size (15-18 cm) or thickness (2-3 cm)
✓ 2025: define size (up to 20 cm) & production specs

Performance

dRICH performance is studied within the ePIC simulation framework (with tracking resolution and magnetic bending) An initiative has started to study impact on physics of ePIC PID subsystems

Mirrors

Program towards TDR:

- ✓ 2024: Substrate & Coating
- ✓ 2024: Light structure
- ✓ 2025: Support & Alignment

Annex C. Technical Requisite

Each spherical mirror is supplied with

- a spot-size measurement,
- a report on dimensions,
- no reflective coating.

The spherical mirrors are replicated from the same mandrel. The latter is realized with the novel cost-effective technology that reduces the mandrel total mass and cost. Each mirror fulfills the following optical quality specification:

- Radius within 1% of nominal RoC value (the nominal RoC values is defined by the customer before production in the range 2000 mm +/- 10%),
- Roughness < 2 nm,
- Pointlike image spot size D0 < 2.5 mm,
- Compatibility with fluorocarbon gases (C₂F₆),
- Compatibility with SiO2 reflecting coating.

for coating tests (ongoing at Stony Brook)

Small demonstrator

Mid-size demonstrator

A-A(1:4)

Quality Assurance

Sensors: INFN (CS/SA/CT) – TS – BO

Aerogel: Temple - BNL – INFN (BA)

Mirror: JLab – Duke – INFN (FE)

TDR Effort in 2024

	Project plan / In-kind											
	Preliminary specs and text layout			1st draft				2nd draft			pre-TDR	
	February	March	April	May	June	July	August	September	October	November	December	
Plan												
Preliminary specs / TDR layout												
TDR Drafts												
Project Plan												

- ✓ April: Preliminary specs & text layout
 Project plan / in-kind preview
- July: 1st draft
 - October: 2nd draft
 - December: Pre-TDR

Assumptions: Pre-TDR (CD2) required at the end of the year Scheme driven by manpower/lead time: remains the same for a TDR (CD3) Extra-time needed fo real-scale mechanics & RDO demonstrators

Performance

dRICH performance is studied within the ePIC simulation framework (with tracking resolution and magnetic bending) An initiative has started to study impact on physics of ePIC PID subsystems

