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Duke contributions to the dRICH

e Simulation
* Mirror quality assurance and evaluation
* Optics optimization — topic of this talk




dRICH optical design

A
y From beam line

* dRICH optics required
to focus Cherenkov
ring across wide n
range, 1.5<1n <3.5

* Design highly
constrained (length
~120 cm, sensor box .

size and position)




Optical desigh parameters

Tunable parameters:
) M i r ro rS : (xsensor sphere» Zsensor sphere)

e Segmentation of mirrors
* Mirror radii

Se,
72S (0] 7 Sp/Ze
Te

(xspherical mirror Zspherical mirror)

e Sensors:

* Position within sensor box (slight
freedom)

e Sensor sphere radius

Rmirror




dRICH optical performance

Noy -k, gas, n=[1.5,2.0] No, —k, gas, n=[2.0,2.5] Noy —k, gas, n=[2.5,3.5]

® Gevio
* Current dRICH design optimized for larger n

* Further tuning/optimization required to reach
desired performance across full n range




Chosen tool: Bayesian optimization

* Optimization approach employed for
hard-to-evaluate problems

* Constructs surrogate model (gaussian
process) that fits the objectives as a
function of design parameters

— GPestimate GPuncertainty & @ Data

* Acquisition function suggests new points
by maximizing expected improvement

* Balance 1. exploring new design parameter
regions and 2. exploiting known well-
performing regions

From: https://ax.dev/docs/bayesopt
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Multi-objective Bayesian optimization (MOBO)

* For a multi-objective problem, aiming to
construct best estimate of the Pareto front
(optimal designs and tradeoffs)

Design Parameters Objectives

* For dRICH: acceptance and resolution at

different (p, n) as separate objectives etector ecomstructed
f1 Simulation Features

e dRICH optimization part of AID(2)E project: Al-
Assisted Detector Design at EIC (BNL, CUA, Duke,
JLab, W&M)

¥ e Develop infrastructure for MOBO applied to
feto "8 detector design and use of distributed
- computing in detector optimization

f2(A) < f2(B) 2

Duke https://en.wikipedia.org/wiki/Pareto_front * Apply MOBO to ePIC Subsystems




Optimization with single mirror

Hypervolume dominated by
* Single mirror -> low and high n optimal points:

perfo rmances are Competing Pareto HV convergence, two objectives, N,._, momentum averaged

<
o

* Framework test: optimization
of No,._g at1.3<mn<2.0and

o
Ul

2.5<n<3.5

 Average of p=15GeV/c and
40GeV/c

« 1000 t* and 1000 K* per p/n
point

* Design parameters as sensor and _
mirror sphere radii, positions T 20 e0 80 100 1o 120
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Optimization with single mirror

Ns__., n bins averaged over momentum

5
€ pareto optimal

m nominal dRICH

* Right: No,_x results from  4-
sampled points

* Tradeoff visible between
low and high n ranges

* No design found with
Nog;_g >=3 for bothlow =
and highn

* Need for multiple mirrors
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Multi-mirror optimization

* Working on updates to IRT library
and ElCrecon to utilize multiple
mirrors in dRICH (IRT PR)

* Next step: optimizing case of two
mirror patches per sector

* + acceptance as optimization
objective

* End goal: use MOBO framework to
determine optimal tiling of sub-
mirrors
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https://github.com/eic/irt/pull/41

Conclusion

* MOBO framework for dRICH design is in place and has been tested on
single mirror design

e Updates to the IRT algorithm will allow for evaluation of a multi-
mirror dRICH

* Work ongoing to optimize a two-mirror dRICH
* First step towards fully optimizing tiling of dRICH mirrors




Extra slides




Uncertainty studies, pi-K separation

Nominal geometry

Simulated 5k pi+
and 5k K+ tracks

Re-sample N tracks
out of this set 1000
times per N

Plotted: std. dev.of

objectives
normalized by
mean
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p=15GeV/c,eta=[1.3,2.0]
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Uncertainty studies, acceptance

Std dev of acceptance normalized by mean acceptance

p=15 GeV/c,eta=[1.3,2.0] p=15 GeV/c,eta=[2.0,2.5] p=15 GeV/c,eta=[2.5,3.5]
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IRT update comparison plot

NPE vs eta Bcher MAE Vs
A single mirror A single mirror
double mirror, same R double mirror, same R
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