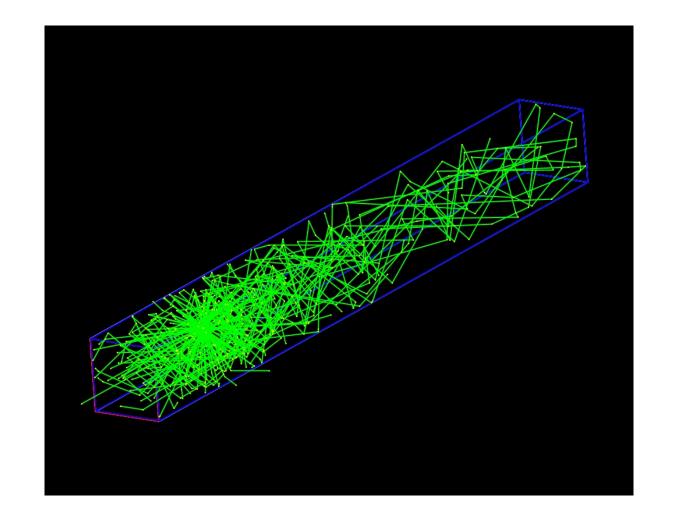
Photodetector Choice for B0 EMCAL: Geant4 Simulation and Estimates

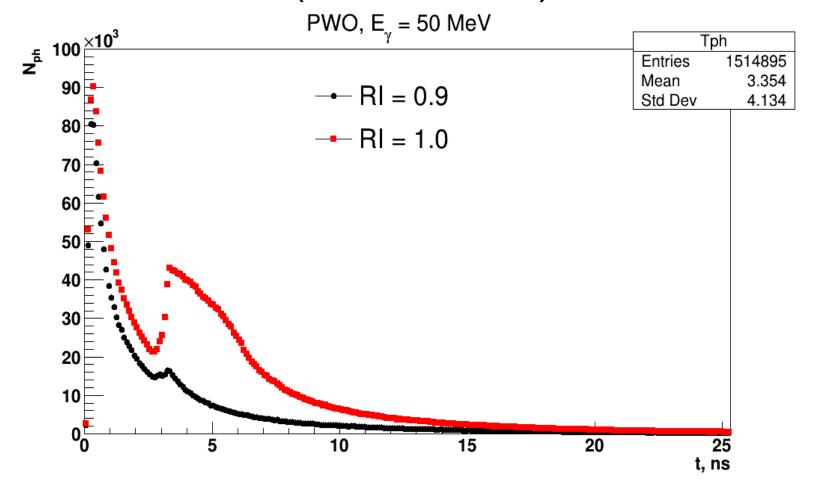
Valeriy Zhezher

Ben Gurion University of Negev

July 09 2024


Outline

- Geant4 simulation of PWO crystal with attached SiPM hit by 50 MeV and 100 GeV gammas;
- Scintillation photon arrival time at SiPM at different PWO surface reflectivities;
- SiPM choice.


PWO properties	

Density (g/cm3)	8.28
Refraction index	2.16
Speed of light (cm/ns)	13.88
Photon yield (1/MeV)	100 – 200 (assuming 100 for this presentation)
Decay time constant (ns)	1.67 – 6.7 (fast, 55 – 70 %) 6.6 – 30 (slow, 30 – 45 %)
Attenuation length (cm)	100 – 200

2x2x20 cm3
PWO crystal (LY
= 100 ph/MeV)
with 300 um
thick Si chip on
its front surface

Time of scintillation photons arrival into SiPM (1000 events)

Properties of SiPMs

Hamamatsu MPPC	Sens. Area (mm²)	PDE (%)	Vbr (V)	Dark count (kcps) Typ. (Max.)	Ct (pF)	RC (ns, R=50 Ω)	Number of pixels
S14160-3015PS	3x3	32	38 ± 3	700 (2100)	530	26.5	39984
S14160-3010PS S14160-6010PS	3x3 6x6	18	38 ± 3	700 (2100) 3000 (10000)	530 2200	26.5 110	89984 359011

SiPM advantages: low operating voltage and power consumption, high gain, sensitivity to low light pulses, negligible nuclear counter effect, some experience within ePIC collaboration (EEEMCAL) including beam test;

SiPM disadvantages: lower PDE, saturation at high intensities of light pulses (nonlinearity 20% at occupancy 50%) and as a result low dynamic range, optical cross-talk, recovery ("dead") time;

SiPM S14160-3015PS 4442 pixel per mm²

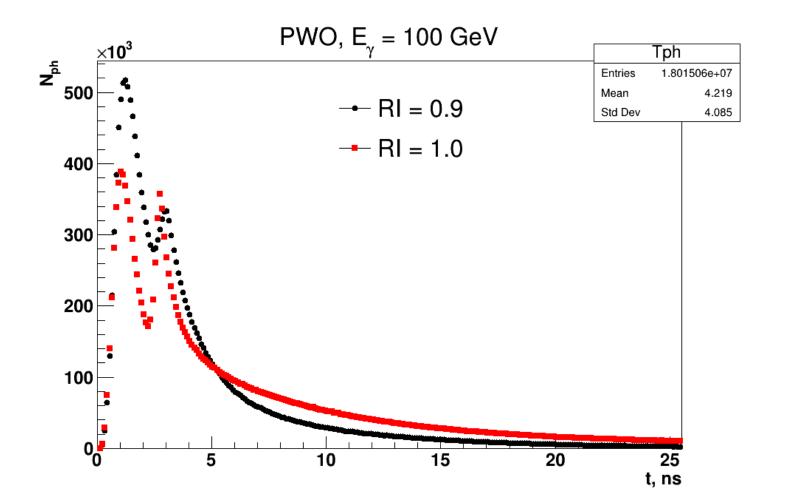
	50 MeV Refl. = 1.0	50 MeV Refl = 0.9	100 GeV Refl = 1.0	100 GeV Refl = 0.9
Number of photons at Si boundary	3130	1515	5.83x10 ⁶	1.76x10 ⁶
Number of photons per mm ²	7.8	3.8	14575	4400
Number of photons per mm ² x PDE	2.5	1.2	4664	1408
Number of signal photons/SiPM	22	11	42k	12.6k
Total signal photons [16 SiPM/crystal]	350	175	670k	200k
Fraction of fired pixels			1.05	0.32
Nonlinearity, %			38.1	14.3

S14160-3010PS 10000 pixel per mm²

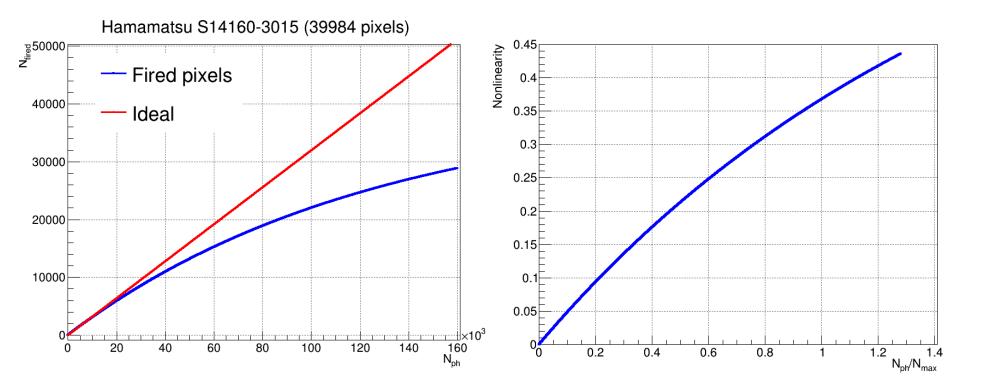
	50 MeV Refl. = 1.0	50 MeV Refl = 0.9	100 GeV Refl = 1.0	100 GeV Refl = 0.9
Number of photons at Si boundary	3130	1515	5.83x10 ⁶	1.76x10 ⁶
Number of photons per mm ²	7.8	3.8	14575	4400
Number of photons per mm ² x PDE	1.4	0.7	2624	792
Number of signal photons/SiPM	13	6	23.6k	7.1k
Total signal photons [16 SiPM/crystal]	210	100	377k	114k
Fraction of fired pixels			0.26	0.08
Nonlinearity, %			12.1	3.9

S14160-6010PS 10000 pixel per mm²

	50 MeV Refl. = 1.0	50 MeV Refl = 0.9	100 GeV Refl = 1.0	100 GeV Refl = 0.9
Number of photons at Si boundary	3130	1515	5.83x10 ⁶	1.76x10 ⁶
Number of photons per mm ²	7.8	3.8	14575	4400
Number of photons per mm ² x PDE	1.4	0.7	2624	792
Number of signal photons/SiPM	50	25	94.4k	28.5k
Total signal photons [4 SiPM/crystal]	200	100	377k	114k
Fraction of fired pixels			0.26	0.08
Nonlinearity, %			12.1	3.9


Conclusions

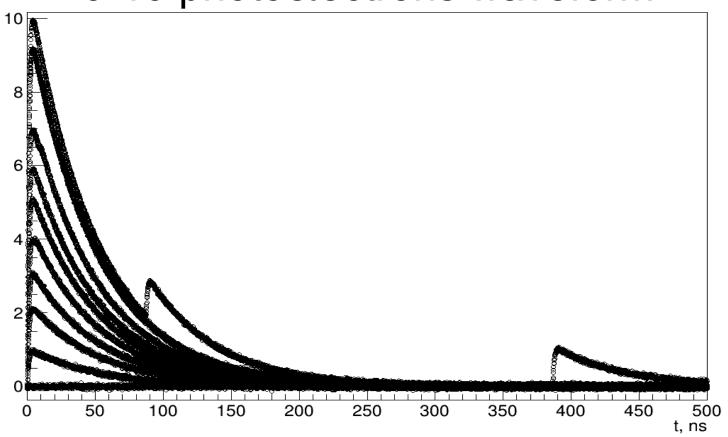
- S14160-3015PS SiPM is not a good choice for B0 EMCAL with PWO because of saturation/non-linearity for hard photon response.
- S14160-3010PS (6010PS) looks like meet requirements
- Higher light yield PWO better for soft photons, nonlinearity still manageable,
- what is expectation for electron EMCal?


Open issues:

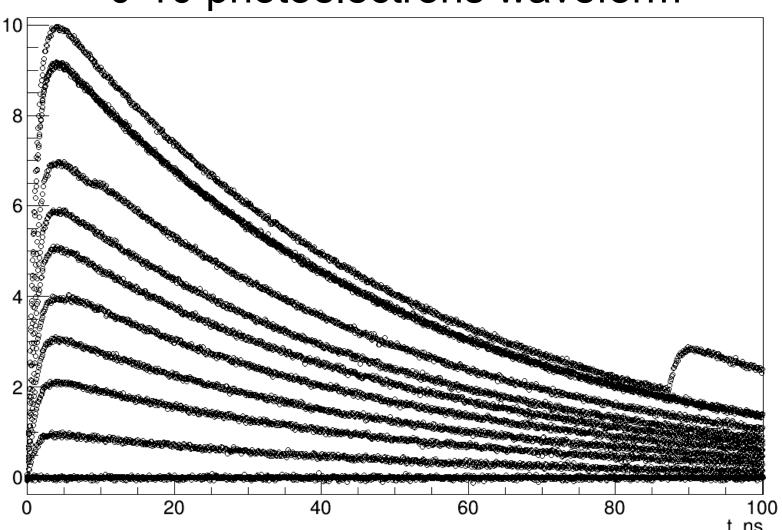
- Realistic PBO optical parameters: reflectivity, crystal-SiPM interface;
- Number of SiPM per crystal needs to be sufficient to reconstruct soft photons with good resolution;
- SiPM response to time spread light from crystal is under study;
- Should talk to colleagues from backwards EMCal.

Spares

SiPM nonlinearity



SiPM Simulation


SimSiPM* is a C++ library to describe and simulate SiPM response to distributed in time photons

```
*) SimSiPM: a library for SiPM simulation
Edoardo Proserpio and Romualdo Santoro
Como, Italy
2021,
url = {https://github.com/EdoPro98/SimSiPM}
```

0-10 photoelectrons waveform

0-10 photoelectrons waveform

