Tracking Performance Using Fast Simulation Studies and Their Improvements

Shyam Kumar*, Annalisa Mastroserio, Domenico Elia INFN Bari, Italy

Istituto Nazionale di Fisica Nucleare

ePIC Tracker (24.06.0)

epic_craterlake_tracking_only.xml

There is an extra support layer before outerMPGD: Additional scattering will affect theta/phi resolutions

15/07/24

Material Budget (ePIC 24.06.0)

15/07/24

Fundamentals of Tracking

Charged Particle in Magetic Field (Lorentz Force)

$$\vec{F} = q(\vec{v} \times \vec{B})$$

If B is uniform the trajectory is helix (easier) apart from the deviations from the multiple scattering at each detector plane

RK propagator also used in Genfit (fun4All)

The Runge-Kutta-Nyström method from above can be adapted to handle second order differential equations, as is needed for the equations of motion in question, **B-field map**

Ref: ACTS

$$rac{d^2ec r}{ds^2} = rac{q}{p}igg(rac{dec r}{ds} imesec B(ec r)igg) = f(s,ec r,ec T), \qquad ec T \equiv rac{dec r}{ds},$$

If B depends on **r (B map required)** the trajectory is predicted analytically solving RK method (RK track propagator)

Full Simulation: RK method

Fast Simulation: Helix method (can also be done with RK method)

15/07/24

Fast Simulation (Kalman)

Track Parameters $(l_{0}, l_{1}, \phi, \theta, 1/p)$

Symmetric matrix = 5(5+1)/2 = 15 independent entries

Two Independent Algorithms (Barrel Track Model)

Extrapolate to the Vertex $\sigma_{l0} \rightarrow \sigma(DCA_{xy}) \quad \sigma_{l1} \rightarrow \sigma(DCA_{z})$ $\sigma_{\theta} \quad \sigma_{\phi} \quad \frac{\sigma_{1/p}}{(1/p)} = \frac{1/p^{2} * \sigma_{p}}{(1/p)} = \frac{\sigma_{p}}{p}$

https://indico.bnl.gov/event/17750/contributions/71187/attachments/4484 3/75637/EPIC_Tracking_Meeting_Shyam1Dec2022.pdf

Three Options (Kalman):

- **1. Outward-->Inward fitting**
- 2. Inward--> Outward fitting
- 3. Combined estimate (Weighted average)

Fast Simulation (Global fit)-generates intermediate distributions (DCA_{xy}, Δp_T , $\Delta \phi$, $\Delta \theta$, chi2)

Assuming uniform magnetic field (helix), ignoring energy loss, assuming Gaussian multiple scattering Provide the optimal **parameters (global)** for the track based on simultaneous chi2 minimization considering all hit points Global fit developed by Shyam

15/07/24

ePIC:24.06.0 layout

Double_t radius[] = {3.18,3.6,4.8,12.0,27.0,42.0,55.0,64.0,67.5,72.5};

```
Double_t x_x0[] =
{0.00364154,0.0005,0.0005,0.0005,0.0025,0.0055,0.00573451,0.0146
278,0.0356207,0.0168985};
```

SiLayerResolution = 20 µm

MMLayerResolution = 150 μ m

LGADResolution = $30 \ \mu m$ Innermost update (IU)

Three Options (Kalman):

Extrapolation	1. Outward>Inward fitting
Outer MPGD	2. Inward> Outward fitting
DIRC (71 cm)	3. Combined estimate (Weighted average)

Kalman uses two steps for theta/phi resolutions to avoid extrapolation to large distance

I can also apply to the real data using the algorithm

First step is validation (Global fit and Kalman)

15/07/24

Particle Identification

Energy loss versus momentum (Bethe-Bloch particle identification)

Separation between particles A and B:

arXiv:hep-ex/0104006

Time-of-Flight (TOF) method

Separation between particles A and B: $n = \frac{(TOF)_A - (TOF)_B}{\sigma_t}$ Excellent time resolution AC-LGAD ~30 psSmall uncertainity in σ_t important to improve separationCherenkov method $\cos \theta = \frac{1}{\beta n}$ Separation between particles A and B: $n = \frac{(\theta)_A - (\theta)_B}{\sigma_{\theta}}$ Small uncertainity in σ_{θ} (several contributing factors) important to improve separation

In the lower momentum region use TOF information while for high-momentum chrerenkov method to improve the tracking performances

15/07/24

Theta/Phi Resolutions

Important for Cherenkov Particle Identification ($\sigma_{\theta_1} \sigma_{\phi_2}$)

- Track extrapolation uncertainty at DIRC layer: Estimation of Theta/Phi resolutions at DIRC (at 71 cm)
- Chromatic uncertainty due to emission of photons of different energy (refractive index n = n(E))
- Measurement uncertainty in the position reconstruction of photons due to pixel size

Fast Simulation (Kalman) uses Inward to Outward fitting algorithm considering multiple scattering at the Outer MPGD layer Global fit also take care of multiple scattering at Outer MPGD layer (parameters are global)

ePIC:old layout without barrel support Outer MPGD: 68.7 cm

ePIC:24.06.0 layout with barrel support Outer MPGD: 73 cm

15/07/24

Tracking Performances: Shyam Kumar

 $\cos\theta$

Theta Resolutions

Kalman uses two steps: Outward-->Inward and Inward-->Outward

ePIC:old layout without barrel support

ePIC:24.06.0 layout with barrel support

Outer MPGD: 68.7 cm

Outer MPGD: 73 cm

As expected Theta resolutions is increased because of support layer

15/07/24

Spatial Resolution and Multiple Scattering (Fast Simulation)

15/07/24

Theta/Phi Resolutions with different MPGD Resolutions

Recently implemented forward/backward track model to the global fit understand pfRICH performances

Z position = {25.,45.,65.,85.0,105.0,110.0,120.0};

Double_t x_x0Si = 0.0024 Double_t x_x0MM = 0.02

pfRich: Proximity Focusing RICH

https://eic.jlab.org/Geometry/Detector/Detector-20240426175116. html

Minor difference because global fit is based on uniform magnetic field

Further understanding to the major contributor to the uncertainity

PfRICH Z = -123.5

Working on improvement of theta/phi resolutions

15/07/24

Material Budget

Different Cases: Reduction of Material budget (switching off multiple scattering) by a factor of 10000

Particle Identification

Separation (Particles A & B):
$$n = \frac{(TOF)_A - (TOF)_B}{\sigma_t} = \frac{L}{p c \sigma_t} (E_A - E_B)$$

Very good particle separation (expected) at low momentum: use PID information to improve performances

Improvement of Performances (Preliminary Ideas)

- Method: Using mean dE/dx information see paper.
- Option 1: TOF will provide a good separation at low momentum (similar idea for other methods of particle identification)
 - Identify a particle using beta vs momentm band (TOF = L/β)
 - We assume length and beta measured precisely which depends on precise measurement of time-of-flight
 - Assign ideal mass to each identified particle and recalculate the momenta

 $p_{recal} = m_0(ideal)\beta$ (measurement) γc

- Option 2: TOF will provide a good separation at low momentum
 - Identify a particle using beta vs momentm band (TOF = L/β)
 - Project beta distribution (Gaussian) at a given momentum then use mean value
 - Assign ideal mass to each identified particle and recalculate the momenta
- Option 3: TOF will provide a good separation at low momentum
 - Identify a particle using beta vs momentm band (TOF = L/β)
 - We assume beta measured precisely which depends on precise measurement of time-of-flight
 - Assign ideal mass to each identified particle and recalculate the momenta use this moment and beta to refit the track with Kalman.

Figure 4: Momentum resolution improvement in the momentum range 50 - 200 MeV/c in STAR-SVT. Open circles denote the resolution obtained by a helix fit and filled circles the resolution when the momentum is extracted from the dE/dx information.

At the moment, we fit the track with pion hypothesis

Look article for dE/dx vs p: arXiv:hep-ex/0104006

Summary

- Extracted the tracking performances with the latest geometry ePIC (24.06.0)
- Studies several configurations to understand the sources of errors
- Ideas to improve the tracking performances but need further test and improvements

Thank You !!