i 9
- '

b2\ ¢ T

Uncertainty quantification and stochastic optimal control:
Applications to booster beam steering

ﬁ

Nathan Urban

hurban@bnl.gov
Applied Mathematics, Computing & Data Sciences | |
Brookhaven National Laboratory B S

Accelerator control

* For this talk: use Bmad model to predict beam position in response to operator inputs
 (Can control other quantities (polarization, emittance, luminosity, “figure of merit”, ...)

* Actual beam position measured (with error) at 24 BPMs

 Bmad can be used in an optimizer to find inputs that better control the beam

* |f Bmad is an accurate “twin” of the real machine
» Model accuracy depends on assumed, but unknown characteristics of the machine

2

Uncertainty in accelerator control

 Objective: Steer the beam (or control other beam properties)

 Problem: Imperfect knowledge of the relationship between system inputs (currents) and
outputs (beam position)

 Magnet misalignments
* Transfer function between current and magnetization
* Current set points not identical to realized currents in system
* |Imperfect modeling can lead to incorrect control policy, but we never have perfect knowledge

sPHENIX

LINAC NSRL"“‘
EBIS- 1o

BOOSTER(..

Parameter estimation (tuning)

Controls c: known inputs that the operator specifies (currents, ...)
Parameters O: fixed but unknown system properties (misalignments, current biases, ...)

Model m(c;0): response of the system to its controls, assuming parameters are known

* e.g., predicted beam position due to currents, if we knew all machine characteristics
 Here we use Bmad as a “digital twin”

Measurements y(c): observed system response to the control

Estimate parameters by fitting model to measurements, e.g. by least squares:

A\

) = arg min,, Zi (y; — m(c; 0))°

Parameter estimation (inference)

* |n parameter fitting, the goal is to find the best-fitting set of parameters

A\

0

* |n Bayesian uncertainty quantification (UQ), the goal is to estimate a probability distribution

over the unknown parameters, not just a single point estimate (best fit).
* Posterior distribution (probability of unknown parameters, conditional on measurements):

p@ y)

* When do you want to go to the trouble of UQ?
* May be many “best fits”, with different implications for predicted behavior
* (in pure science) To put error bars on predictions (e.g,. compare theory and experiment)

* (iIn control) Nonlinear response / non-Gaussian errors mean that best fit parameters don’t
correspond to controller with best average performance

* (in control) We might want to know the expected reliability of a control policy

Probabillistically fitting a model to data

» Example of a 3-parameter model from
climate science

* Could tune these parameters to data o

* But rather than a point estimate, we . | Modelpredictionsat
can assign each parameter value a different parameter settings
probability weight i

* Weight given by “goodness of fit”
* |t is (probabilistic, nonlinear) regression

Temperature anomaly (°C)

I I I I I I
1850 1900 1950 2000 2050 2100

Year

Probabillistically fitting a model to data

» Example of a 3-parameter model from
climate science

* Could tune these parameters to data o

* But rather than a point estimate, we . | Superimpose historical data
can assign each parameter value a on modef predictions
probability weight i

* Weight given by “goodness of fit”
* |t is (probabilistic, nonlinear) regression

Temperature anomaly (°C)

o.‘ 4 w

I I I I I I
1850 1900 1950 2000 2050 2100

Year

Probabillistically fitting a model to data

» Example of a 3-parameter model from
climate science

* Could tune these parameters to data

» But rather than a point estimate, we
can assign each parameter value a
probability weight

* Weight given by “goodness of fit”
* |t is (probabilistic, nonlinear) regression

Temperature anomaly (°C)

Give higher probability to
parameter settings that lead to
better data-model agreement

1850 1900 1950 2000 2050

Year

Probabillistically fitting a model to data

» Example of a 3-parameter model from
climate science

* Could tune these parameters to data o

» But rather than a point estimate, we . | Propagate parameter uncertainty
can assign each parameter value a ‘o prediction uncertainty
probability weight i

* Weight given by “goodness of fit”
* |t is (probabilistic, nonlinear) regression

Temperature anomaly (°C)

1850 1900 1950 2000 2050 2100

Year

Posterior distribution: p(parameters|data)

Parameter 2

N

50

100

150

200

Mixed layer depth (m)

Posterior predictive distribution

250

6_

5_

4+

0.25

0.03 ¢
Parameter 1
15+
0.02
hg 10}
0.01
05+ /
00, 1 2 3 A 5 000
Equilibrium climate sensitivity (°C)
O 6,
> i
(—EU 5
S 4
-
© 3
8
S 2
)
%iil
c 0
£ 1850

1900

1950

Year

2000

2050

2100

Parameter 3

J

075 100 125 150 175

Aerosol forcing scale factor

Bayesian inference (probabilistic parameter estimation)

» Goal: infer parameter probability density functions (PDFs) from data
» Conditional inference: infer parameter uncertainties from known data

Bayes theorem: p(parameters|data) = p(data|parameters) p(parameters) / p(data)

\ 7

posterior o likelihood X prior

To infer posterior PDF, need to know likelihood function (data-generating
distribution) and prior distribution (beliefs about parameters before seeing the data).

Bayesian uncertainty quantifies “ignorance” about the true parameter values.

Prior distribution: p(parameters)

 \What you believe about the parameters before you've seen the data
e Use outside information (physical predictions, other data sources)
* Priors must be independent of conditioning data (no double-counting)

e (Can use posterior inferred from other data as prior (sequential Bayesian update)

e Elicit booster prior uncertainties from operators
e trim current errors =£10-3(1-0)
* magnet misalignments informed from previous surveys
e transfer function coefficient ranges harder to elicit (not directly measured)

Likelihood function: p(datajparameters)

Assume data is distributed randomly (additively) around an accelerator model (e.g. Bmad):

Measurements(BPM location 1) = Model(control; parameters) + Noise

y; =m(c;0) + ¢
Assume noise process is noise process (€) is normal (independent and identically distributed, or
iid), zero mean: € ~ N(0, 6 . 2
> ©.99 5~ N = mc;0), 6Y
(Likelihood: one observation)

pQy; 0) =

B l (v; — my(c; 6’))2
exp 5 —02

\/ 2762

(Likelihood: all observations)

1 2, = myc: 9))2]

1
p(y 0) =1l p(y; 0) = |) P [2 o2

Likelihood function: p(data|parameters)

Note: for an /id normal likelihood model, the maximum likelihood estimate (MLE)
for 0 Is the same as a least squares or minimum x?2 fit.

(Likelihood: all observations)

Assume noise process Is noise process (&) Is normal (independent and identically distributed, or
iidl), zero mean: € ~ N(0, 67

y; ~ N(u = my(c; 0), 02)

Posterior distribution: p(parameters|data)

The posterior is proportional to the product of the likelihood and prior (which we
will assume is independent for each parameter).

1 Y - me; 0] K
— 5”— < [| p@)

1
(Hi\/2”5i2> p[i —

The log posterior is like a “regularized” least squares fit. If the priors are assumed normal around
some typical mean, 6, ~ N(0,, 1/,3), then the “maximum a posteriori” (MAP) estimate arises from
minimizing a least squares term with an additional “penalty” term on the parameters.

p@ y) xp(y 0)p0) =

—log p(f y) Z 5 + const

(y; — my(c; 9))2 = (Hk—ék)z
+) -

o2
k=1

Posterior distribution: p(parameters|data)

» However. These relationships are just to connect to some familiar concepts.
* In UQ, we usually are not interested in point estimates.

 (and if we do make a point estimate, it's usually the posterior mean, not MAP)
» Our real goal is uncertianty, which means the full posterior distribution

* [ts mean, variance, and all higher moments

1 Zi\il (v; = my(c; 0))°

1
(Hi\/Ziwiz) p[: ;

p@ y) xp(y 0)p(0) =

X H§:1 p(6,)

Markov chain Monte Carlo (MCMC) sampling

e \We want to calculate the posterior distribution. In high Markov chain
dimensions, Monte Carlo sampling works best.

800
I

e sampling converges like 1/\ﬁv, where N is # of samples

Sample
400
|

e How to sample from an arbitrary distribution” _

0
I

e Approach: importance-biased random walk — T T T

e spend more time sampling high-probability regions

Parameter

e (note: samples from a random walk are not independent)

Histogram

Density
0.0 01 0.2 0.3 04

Parameter

Physics note: MCMC

e Sampling from a probability distribution p(x) is directly
analogous to statistical mechanics
e Sample Boltzmann distribution p(x) « eBEX)

e -log p(x) is analogous to potential energy

it i i

| = | =P | e | = | =
= |||
M e i e e
M e e i B
==
—p| | | = | = | =

e Or lattice gauge theory
e p(x) « e-SIa

e -log p(x) is analogous to the action ¥(x)
e Advanced Bayesian inference uses hybrid Monte Carlo ~ ¢ o o
(HMC), just like lattice QCD
@

e Requires calculating gradient of p(x)

e Which for us means the gradient of the model output
(e.g., Bmad beam position) w.r.t. the parameters — oo

e Differentiable Bmad would be very helpful v

Metropolis MCMC algorithm . /

\WNEF | '
,ll ﬁ"/;'";‘ ;L 4’, °
1 f-’; '/ Nicholas C. Metropolis Center

,';’ o For Modeling & Simulation

o Let the target distribution 7(6) be the posterior, p(6|y)

e (Construct a random walk as follows:
1. Start at point 6

LANL

distribution {(©'|0) (e.g., a Gaussian perturbation)

3. If this moves us to a higher probability point, 7(8") > 7(9), accept the move to &'

4. If this moves us to a lower probability point, accept randomly with probability 77(6")/7(6);
else reject and stay at the same point ©

5. Either way, record the point you end up at to construct the Markov chain
6. Repeat

Code for
Bayesian regression

function metropolis(1lpdf, num_iter, Xe, step)

D = length(xe)

chain = zeros(num_iter, D)

chain[1,:] = Xo

X, lp = Xe, lpdf(xXe)

num_accept = 0

for 1 = 2:num_1ter
X" = X + step .x randn(D) # proposal
lp’ = lpdf(x’)

if log(rand()) < 1p” = 1lp # Metropolis
X, lp=x", lp’
num_accept = num_accept + 1

end

chain[i,:] = x
end

return (chain, num_accept/num_iter)
end

function model (p)
° A,d,o, To = p
O o0 At = 31557600. # year [s]
JUIIa C = 4184000 * d # heat capacity/area [J/K/m"2]
F = forcing non aerosol + a*forcing aerosol
T = zero(F)
for 1 in l:length(F)-1
T[i+1] = T[i] + (F[i] - A*T[i])/C * At
end
return T .+ To
end

function log posterior(p)
A,d,o, To = p
log post = -Inf

if >0 & d > 0 && o > 0 # parameters in range
F2xCO> 4.0 # forcing for doubled CO: [W/m2]
lpri A = logpdf(LogNormal(log(3), log(2)/2), F2xCOz2/M\)

+ log(F2xC0:2/M"2) # ECS prior + Jacobian (ECS = F2xCO:/1)

lpri d logpdf (Normal (100, 25), d)

lpri a = logpdf(LogNormal(log(l), log(l.5)/2), a)
lpri To = 0

log pri = lpri A + 1lpri d + lpri o + lpri To # prior
0 = 0.1 # observational noise standard deviation [K]

r = temp obs - model(p)[midx] # data-model residual
log 1lik = sum(logpdf.(Normal(0,0), r)) # likelihood
log post = log 1lik + log pri # posterior

end

return log post
end

Optimizing control inputs

Control c: currents or other inputs that the operator can specify
Model m(c): the modeled system response to inputs (e.g., beam position)
Objective: a metric of system performance (e.g., a loss function) to optimize

e F(m(c)) = Zi (Z; — ml-((:))2 (deviation of beam position from target position at BPMSs)

e (e.g.,z;=0)

Find control that optimizes objective:

c* = arg min . Z'(m(c))

Solve using standard optimization algorithms (quasi-Newton, gradient descent, ...)

Stochastic optimization for control inputs

Control c: inputs that the operator can specify
Parameters 0. unknown system characteristics

* Assume we have inferred a distribution p(6) representing parameter uncertainty (e.g. a posterior p(6|y))
Model m(c;0): the modeled system response to inputs (e.g., beam position)

Objective: a metric of system performance (e.g., a loss function) to optimize

« L(m(c;0 y)) = Zi (Z; — my(c; 0))? (deviation of beam position from target position at BPMs)

Stochastic control aims to be robust to uncertainties in quantities we can’t estimate perfectly
Find control that optimizes expected objective (average over Monte Carlo parameter samples {6}}):

c* = arg min) [L(m(c; 0))]

N
Zz‘,(zl—m(c 0))°

]=1 =1

Solve with a stochastic optimizer (designed to handle noisy objective functions)

On optimal control methods

There are many optimization methods floating around
 Bayesian optimization, gradient descent, quasi-Newton methods, ...
There are many ways to formulate beam control as an optimization problem

* Nonlinear loss minimization, expected utility maximization (with chance constraints),
robust optimization/control, classical control theory, reinforcement learning

Probably a digression to discuss pros/cons in this talk, but we should discuss in the project
The methods discussed here are adapted for this setting:

* There is a physical system model, which is much cheaper than real experiments

* We can solve control policies offline using the physical model (digital twin)

 The model is imperfect, but imperfections are learnable via data-model comparisons
 [here are many variables to control; maybe many uncertain system parameters
 Decisions are one-off / non-sequential (if sequential, can extend to RL-like approaches)

Model emulation

* We can only afford a limited nhumber of Bmad simulations; hard to embed in Monte Carlo sampler

where many evaluations are required

» Can we estimate “what the model would have predicted at a new parameter setting” from an
ensemble of training simulation output, without actually running the model?

» “Response surface” emulation: interpolation to the rescue
» Gaussian processes (as in Bayesian optimization), neural networks, other regression approaches

Model output

3

2

-

o

I
-

I
N

I
W

4 model runs

5 10
Model input (parameter)

15

>

Model output

3

2_

-

-

I
=

I
N

I
W

Emulator
(interpolant / nonparametric regression)

5 10 15
Model input (parameter)

Gaussian process regression as emulation

* A Gaussian processes is a probability distribution on a space of functions
» Can be used for probabilistic interpolation / regression

* Draw, say, 1000 Gaussian random samples and plot them over “space”:

3_

Y. ~ N(0,1) °

Gaussian process regression as emulation

* A Gaussian processes is a probability distribution on a space of functions
» Can be used for probabilistic interpolation / regression

* Draw 1000 random variables, but correlated with each other; here are 3 draws:

Y ~ N(O,Y), Y = Cov(Y, V) Lr

_ Xi B)(] - 0+
Cov(Y,,) = clexp| — 7 :

Gaussian process regression as emulation

* A Gaussian processes is a probability distribution on a space of functions
» Can be used for probabilistic interpolation / regression

* Draw 1000 random variables, but correlated with each other; here are 3 draws:

3_

BV
Y ~ N(0.Y), ;= Cov(Y,) L ~ \
_ (Xl B)(J) - 0 F
Cov(Y,,Y) = o”exp| — . \,

A

Gaussian process regression as emulation

* A Gaussian processes is a probability distribution on a space of functions
» Can be used for probabilistic interpolation / regression

* Draw 1000 random variables, but correlated with each other; here are 3 draws:

3_

c=1,A=15

Y ~ N(O,Y), Y = Cov(Y, V) 1r

- Xi B)(J - 0k
Cov(Y,,Y) = o”exp| — p .
-1 F

Gaussian process regression as emulation

* We have seen that we can draw random vectors that have smooth behavior by
imposing a correlation over space (nearer points are more correlated)

* A Gaussian process is the continuum limit of this idea to random functions
* We can be Bayesian, and condition on “observed” data to get a posterior:

3_

2_

Model output
()

Y~ N(p™, 27)
//t>x< — ZptEt_tlyt
Y*=3 -3 3%

-
I

I
=
I

5 10
Model input (parameter)

15

CrossValidated (2019)

Gaussian process regression as emulation

* We have seen that we can draw random vectors that have smooth behavior by
imposing a correlation over space (nearer points are more correlated)

* A Gaussian process is the continuum limit of this idea to random functions

* We can be Bayesian, and condition on “observed” data to get a posterior:
3 -

g (B /
§ 0 —/ \ N
K K 2 C
Y ~ N(u ,21) S ‘ f
//t>x< — ZptEt_t Yt Y *
Y*=3 -3 3%
-3, | | | 4 3 2 1 0 2 3
0 5 10 15

Model input (parameter) CrossValidated (2019)

Errors In variables

 We have assumed that the controls (e.g., currents) are perfectly known, because we set them

 But what if the true control is unknown (currents fluctuate randomly, or there is a persistent but unknown bias
between set point and realized current)?

 The model has noisy inputs in addition to noisy outputs

 We can treat the “true” controls as parameters to infer (“latent variables”)

« Probability model for set current as random perturbation of true current: Ed ~ N(Cd, gj

 Find joint posterior for parameters and true currents p(@, c v, ¢)

p@,c y,c) xp(y 0)p(c ¢)p(0)p(c)
I Y (1)) ol I SRR T Camcd’

X exp 5 s X H 2 H

, p)
l k=1 l d=1 Sd

Obtain parameter posterior by integrating out (“marginalizing over”) latent variables: p(f y,c) = Jp(

,C y,C)dc

Do any of these uncertainties matter?

So far we’ve been proceeding under the assumption that we know which parameters are
responsible for beam positioning, or Bmad model misfit

 We just have to quantify their effects

What if we don’t know what matters?

 Magnet misalignments, transfer function, trim currents

Can we go through a list of suspects, and identify or quantify their importance?

* |n terms of influence on model prediction, or data-model misfit

Characterizing the response of outputs to inputs is known as sensitivity analysis
Traditional approach: “one-at-a-time” (OAT) parameter scan

* Pick a parameter, change its value over a range (fixing all other parameters at nominal)
 Doesn’t pick up any interactions between parameters

 (Can be sample-inefficient (most of the time you aren’t learning about most parameters)
 Be aware of overconfidence: exploring parameters and stopping when one shows an effect

Accounting for uncertainty In sensitivity analysis

* OAT: change one parameter, holding all others fixed
* Alternative: change one parameter, sampling randomly over all other parameters (given a distribution)
* Accounts for uncertainty in the response of one parameter, due to variability in other parameters

(Tmn.r (] C/l
200¢ 1 200¢ 1 200¢
150+t 1 150F 1 150+ 1
100F 1 100F 1 100} 1
H50¢ 1 50t 1 5100 1
(A A A . A A () .J A A A l‘).A A A A 1
(.82 1.00 1.20 1.40 1.60 1‘77 1.00 1.50 2.15 2.80 3.33 0.8 0.9 1.0 1.1)
x 10° %10 !
(I()g(“’/”) m
200¢ 1 200¢% 1 200¢
100+ 1 100¢ 1 100t
:-’“ | \ . :’)() -
(A A A A A () [A A A A A) A A A A A A
0.8 0.9 1.0 1.1 1.2 9.67 10.50 11.35 12.20 13.06 12 20 30 10 al 5%

—— Mean sea-level contribution (mm) 68% Credible Interval 095% Credible Interval Jantre et al. (2024)

Variance-based global sensitivity analysis (GSA)

Sobol’ decomposition: Analysis-of-variance (ANOVA) to construct a model’s “uncertainty budget”

* Requires user to specify a probability distribution over uncertain inputs

How much of the output uncertainty can be attributed to the uncertainty in a particular input?

* Or, how much could we reduce output uncertainty if we learned the true value of an input?

How much does an input contribute directly, and indirectly through correlations with other inputs?
» Quantifies importance of (2-way, 3-way, ...) interactions between input variables

Contrast with “one-at-a-time” parameter scans

* Don’t identify contributions to output uncertainty, or detect interactions
Specific advantages when GSA is coupled with an emulator:

* Fast, closed-form analytic solutions for sensitivity metrics

* Change assumptions about input uncertainties without new simulations

Global sensitivity analysis, quantitatively

* How much would we reduce uncertainty in output Y, if we learned the value of the ith input, Xi?
» Difficulty: we don’t know the true value of X;
* Uncertainty in output due to uncertainty in all inputs = Var(Y)
* Uncertainty in output, after learning the true value x of input Xi = Var-i(Y | Xi=x)
» Expected output uncertainty after learning true input, averaged over input uncertainty = Ei(Var-i(Y | Xi))
« Expected reduction in uncertainty after learning input i = Var(Y) - Ei(Var-i(Y | Xi))
» Also equal to Vari(E-i(Y| Xi)), via law of total variance
» Normalizing by the output variance gives the first-order sensitivity index, Si= Vari(E-i(Y| Xi)) / Var(Y)
* Nested expectations calculated by sampling, or (sometimes) analytically with an emulator of Y(X)

* We can define similar indices for interactions between pairs of variables, Si;
* The sum of first-order and interaction sensitivities is the total sensitivity index, Ti= E-i(Vari(Y | X-i)) / Var(Y)
* A large first-order sensitivity means it would be valuable to reduce uncertainty in that variable

* A small total sensitivity means that variable’s uncertainty is negligible (it does not influence output
uncertainty either directly, or indirectly through its interactions with other variables)

Code for global sensitivity analysis

conditional draw on Xi

randi(d, 1, Xi) = [J==1 ? Xi : rand(d[]]) for j=l:length(d)]

conditional draw on XxX-i

rand!i(d, 1, x!i) = [J==1 ? rand(d[1]) : x!i[]J] for jJ=l:length(d)]

Sobol' first-order sensitivity index
S(m, d, 1, N) = var(mean(m(randi(d,1,xi)) for k=1:N) for xi in rand(d[i],N))
/ var(m(rand.(d)) for j=1:N"2)

Sobol' total sensitivity index
T(m, d, 1, N) = mean(var(m(rand!i(d,i,x!i)) for k=1:N) for x!i 1n (randi(d,i,NaN) for jJj=1:N))
/ var(m(rand.(d)) for j=1:N"2)

julia

Global sensitivity analysis example

 Sensitivity of flooding to sea level rise and hurricane direction, speed, and intensity

* This does not mean these two inputs are correlated with each other (though they can be)
» Rather, nonlinear variations in the output may occur when two variables change together
* These effects would be invisible if the inputs were varied one-at-a-time

sea level rise heading
l
| f heading x velocity

| |

velocity min pressure

sqgrt variance explained

Francom et al.
LA-UR-19-27244

Optimal experimental design

* Which experiments would give us the information we need to help us control the beam?
 Choose experiments whose data would reduce uncertainties the most?
* Or rather, most reduce the objective to the stochastic optimal control problem

Simulated data sets
from experiment

Simulated data sets
from experiment

) 00

Model uncertainty
— — » (parameter or prediction)

Optimal experimental design: Mathematics

- Uncertainty about parameter distribution p(€/) given by entropy H|0| = [[log p(&)]

» What experiment d would most reduce the entropy (maximize information gain)
» Possible experimental outcomes are random, with probability distribution p(y @, d)
» Observing an outcome y gives a new distribution p(& y) with entropy H|0 v].
+ We want to maximize information gain (entropy reduction) H|0| — H|60 V]

» The problem is, we don’t know which outcome y we will measure

» Choose d to maximize expected information gain (EIG), averaged over possible outcomes

What next?

* We need to identify controls (and their ranges) that matter to the beam position
* More expert elicitation, sensitivity analysis / parameter screening, ...
 Perform UQ
* Are results Gaussian? Correlated? May inform approximations we make in the future
» Stochastic optimization
* Minimize expected loss via BFGS, gradient descent, BO, ...
* Optimal experimental design
* How important are Bmad structural errors (biases, missing physics, ...?7)
» Keep adding things to Bmad? Some other approach
» Sequential / realtime decision making?
* Amortized myopic optimization (precompute policy: optimal solution conditional on state)
* Reinforcement learning (accounting for future decisions in present actions)
* RL with UQ: all state variables become belief states (infinite-dimensional distributions)

