
Uncertainty quantification and stochastic optimal control:
Applications to booster beam steering

Nathan Urban
nurban@bnl.gov

Applied Mathematics, Computing & Data Sciences

Brookhaven National Laboratory

Accelerator control
• For this talk: use Bmad model to predict beam position in response to operator inputs

• Can control other quantities (polarization, emittance, luminosity, “figure of merit”, …)

• Actual beam position measured (with error) at 24 BPMs

• Bmad can be used in an optimizer to find inputs that better control the beam

• If Bmad is an accurate “twin” of the real machine

• Model accuracy depends on assumed, but unknown characteristics of the machine

Uncertainty in accelerator control
• Objective: Steer the beam (or control other beam properties)

• Problem: Imperfect knowledge of the relationship between system inputs (currents) and

outputs (beam position)

• Magnet misalignments

• Transfer function between current and magnetization

• Current set points not identical to realized currents in system

• Imperfect modeling can lead to incorrect control policy, but we never have perfect knowledge

Parameter estimation (tuning)
• Controls c: known inputs that the operator specifies (currents, …)

• Parameters 𝜃: fixed but unknown system properties (misalignments, current biases, …)

• Model m(c;𝜃): response of the system to its controls, assuming parameters are known

• e.g., predicted beam position due to currents, if we knew all machine characteristics

• Here we use Bmad as a “digital twin”

• Measurements y(c): observed system response to the control

• Estimate parameters by fitting model to measurements, e.g. by least squares:

̂θ = arg minθ ∑i (yi − mi(c; θ))2

Parameter estimation (inference)
• In parameter fitting, the goal is to find the best-fitting set of parameters

• In Bayesian uncertainty quantification (UQ), the goal is to estimate a probability distribution

over the unknown parameters, not just a single point estimate (best fit).

• Posterior distribution (probability of unknown parameters, conditional on measurements):

• When do you want to go to the trouble of UQ?

• May be many “best fits”, with different implications for predicted behavior

• (in pure science) To put error bars on predictions (e.g,. compare theory and experiment)

• (in control) Nonlinear response / non-Gaussian errors mean that best fit parameters don’t
correspond to controller with best average performance

• (in control) We might want to know the expected reliability of a control policy

̂θ

p(θ |y)

Probabilistically fitting a model to data

1850 1900 1950 2000 2050 2100

0
1

2
3

4
5

Year

Te
m

pe
ra

tu
re

 a
no

m
al

y
(°°C

)

0
1

2
3

4
5

Model predictions at
different parameter settings

• Example of a 3-parameter model from
climate science

• Could tune these parameters to data
• But rather than a point estimate, we

can assign each parameter value a
probability weight
• Weight given by “goodness of fit”

• It is (probabilistic, nonlinear) regression

Probabilistically fitting a model to data

1850 1900 1950 2000 2050 2100

0
1

2
3

4
5

Year

Te
m

pe
ra

tu
re

 a
no

m
al

y
(°°C

)

0
1

2
3

4
5

●

●●●●●
●
●●

●●●

●

●

●

●●●●●●●
●
●
●●●

●
●

●●●●●
●●
●
●
●

●

●
●
●●
●●

●●

●

●
●
●

●
●●

●
●

●
●●●●

●●

●
●

●
●

●
●●
●

●●●
●
●
●●

●

●●●

●

●●●

●●●
●
●
●●

●

●

●●●●
●

●
●
●

●●
●

●
●
●
●
●●●

●
●
●●●

●
●

●

●

●

●●●

●
●
●●
●
●

●

●●
●

●●
●

●●

●●
●
●

●

●

●

●●

●
●●●●●●

Superimpose historical data
on model predictions

• Example of a 3-parameter model from
climate science

• Could tune these parameters to data
• But rather than a point estimate, we

can assign each parameter value a
probability weight
• Weight given by “goodness of fit”

• It is (probabilistic, nonlinear) regression

Probabilistically fitting a model to data

1850 1900 1950 2000 2050 2100

0
1

2
3

4
5

Year

Te
m

pe
ra

tu
re

 a
no

m
al

y
(°°C

)

0
1

2
3

4
5

●

●●●●●
●
●●

●●●

●

●

●

●●●●●●●
●
●
●●●

●
●

●●●●●
●●
●
●
●

●

●
●
●●
●●

●●

●

●
●
●

●
●●

●
●

●
●●●●

●●

●
●

●
●

●
●●
●

●●●
●
●
●●

●

●●●

●

●●●

●●●
●
●
●●

●

●

●●●●
●

●
●
●

●●
●

●
●
●
●
●●●

●
●
●●●

●
●

●

●

●

●●●

●
●
●●
●
●

●

●●
●

●●
●

●●

●●
●
●

●

●

●

●●

●
●●●●●●

Give higher probability to
parameter settings that lead to
better data-model agreement

• Example of a 3-parameter model from
climate science

• Could tune these parameters to data
• But rather than a point estimate, we

can assign each parameter value a
probability weight
• Weight given by “goodness of fit”

• It is (probabilistic, nonlinear) regression

Probabilistically fitting a model to data

1850 1900 1950 2000 2050 2100

0
1

2
3

4
5

Year

Te
m

pe
ra

tu
re

 a
no

m
al

y
(°°C

)

0
1

2
3

4
5

●

●●●●●
●
●●

●●●

●

●

●

●●●●●●●
●
●
●●●

●
●

●●●●●
●●
●
●
●

●

●
●
●●
●●

●●

●

●
●
●

●
●●

●
●

●
●●●●

●●

●
●

●
●

●
●●
●

●●●
●
●
●●

●

●●●

●

●●●

●●●
●
●
●●

●

●

●●●●
●

●
●
●

●●
●

●
●
●
●
●●●

●
●
●●●

●
●

●

●

●

●●●

●
●
●●
●
●

●

●●
●

●●
●

●●

●●
●
●

●

●

●

●●

●
●●●●●●

Propagate parameter uncertainty
to prediction uncertainty

• Example of a 3-parameter model from
climate science

• Could tune these parameters to data
• But rather than a point estimate, we

can assign each parameter value a
probability weight
• Weight given by “goodness of fit”

• It is (probabilistic, nonlinear) regression

4/1/2021 EBM_MCMC3_ForPresentation - Jupyter Notebook

localhost:8888/notebooks/Research/Work/UQ/EBM_MCMC3_ForPresentation.ipynb 12/13

In [289]:

Out[289]:

add_noise(x, σ=0.1) = x + rand(Normal(0,σ), length(x))

num_samp = 10000
chain_samples = chain[sample(1:num_iter, num_samp),:]

Tpred = zeros(num_samp, length(time_forcing))
for i in 1:num_samp
 Tpred[i,:] = add_noise(model(chain_samples[i,:]))
end

Tpred_mean = [mean(Tpred[:,t]) for t in 1:length(time_forcing)]
Tpred_lo = [quantile(Tpred[:,t], 0.025) for t in 1:length(time_forcing)]
Tpred_hi = [quantile(Tpred[:,t], 0.975) for t in 1:length(time_forcing)]

using Plots.PlotMeasures
plot(time_forcing, Tpred_mean, ribbon=(Tpred_mean-Tpred_lo,Tpred_hi-Tpred_m
plot!(time_obs, temp_obs, color="blue", linewidth=2)

4/1/2021 EBM_MCMC3_ForPresentation - Jupyter Notebook

localhost:8888/notebooks/Research/Work/UQ/EBM_MCMC3_ForPresentation.ipynb 11/13

In [293]:

Out[293]:

plt = kdeplot(chain[:,3], 2; xlabel="Aerosol forcing scale factor", ylabel=
plot!(x->pdf(LogNormal(log(1), log(2)/3), x), lw=2)

4/1/2021 EBM_MCMC3_ForPresentation - Jupyter Notebook

localhost:8888/notebooks/Research/Work/UQ/EBM_MCMC3_ForPresentation.ipynb 10/13

In [294]:

Out[294]:

layer depth (m)", ylabel="pdf", titlefontsize=18, labelfontsize=16, tickfont
x), lw=2)

4/1/2021 EBM_MCMC3_ForPresentation - Jupyter Notebook

localhost:8888/notebooks/Research/Work/UQ/EBM_MCMC3_ForPresentation.ipynb 9/13

In [235]:

In [236]:

In [272]:

In [295]:

223.966523 seconds (8.78 G allocations: 168.681 GiB, 10.83% gc time)
acceptrate = 0.239881

Out[235]: 1×4 Matrix{Float64}:
 1.57085 109.456 1.29179 0.0

Out[272]: kdeplot (generic function with 2 methods)

Out[295]:

num_iter = 1000000
step = abs.(p₀) / 10 # try step sizes 10-20x smaller than the typical value

@time chain, acceptrate = metropolis(log_posterior, num_iter, p₀, step)

@show acceptrate # aim for about 20-30%
pmean = mean(chain; dims=1)

λ, d, α, T₀ = chain[:,1], chain[:,2], chain[:,3], chain[:,4]
ECS = F2xCO₂ ./ λ;

unction kdeplot(x, α=1; kwargs...)
 k = kde(x; bandwidth=α*KernelDensity.default_bandwidth(x))
 return plot(k.x, k.density, ribbon=(k.density,0*k.density), linewidth=2,
nd

ensitivity (°C)", ylabel="pdf", titlefontsize=18, labelfontsize=16, tickfont
xlim=(0,5))Posterior distribution: p(parameters|data)

Posterior predictive distribution

Parameter 1 Parameter 2 Parameter 3

Bayesian inference (probabilistic parameter estimation)

• Goal: infer parameter probability density functions (PDFs) from data
• Conditional inference: infer parameter uncertainties from known data

Bayes theorem:

To infer posterior PDF, need to know likelihood function (data-generating
distribution) and prior distribution (beliefs about parameters before seeing the data).
Bayesian uncertainty quantifies “ignorance” about the true parameter values.

p(parameters|data) = p(data|parameters) p(parameters) / p(data)

posterior ∝ likelihood ⨉ prior

Prior distribution: p(parameters)
• What you believe about the parameters before you’ve seen the data
• Use outside information (physical predictions, other data sources)
• Priors must be independent of conditioning data (no double-counting)
• Can use posterior inferred from other data as prior (sequential Bayesian update)

• Elicit booster prior uncertainties from operators
• trim current errors ≈±10-3 (1-σ)

• magnet misalignments informed from previous surveys
• transfer function coefficient ranges harder to elicit (not directly measured)

Likelihood function: p(data|parameters)
Assume data is distributed randomly (additively) around an accelerator model (e.g. Bmad):

Assume noise process is noise process () is normal (independent and identically distributed, or
iid), zero mean:

ε
ε ∼ N(0, σ2)

Measurements(BPM location i) = Model(control; parameters) + Noise

 yi = m(c; θ) + ε

 yi ∼ N(μ = mi(c; θ), σ2)

 p(yi |θ) =
1

2πσ2
exp[−

1
2

(yi − mi(c; θ))2

σ2]
 p(y |θ) = Πi p(yi |θ) =

1

(∏i 2πσ2
i)

exp[−
1
2

∑i (yi − mi(c; θ))2

σ2]

(Likelihood: one observation)

(Likelihood: all observations)

Likelihood function: p(data|parameters)
Note: for an iid normal likelihood model, the maximum likelihood estimate (MLE)
for 𝜃 is the same as a least squares or minimum 𝜒2 fit.

Assume noise process is noise process () is normal (independent and identically distributed, or
iid), zero mean:

ε
ε ∼ N(0, σ2)

 yi ∼ N(μ = mi(c; θ), σ2)

 p(y |θ) = Πi p(yi |θ) =
1

(∏i 2πσ2
i)

exp[−
1
2

∑i (yi − mi(c; θ))2

σ2] ∝ exp(−χ2/2)

(Likelihood: all observations)

Posterior distribution: p(parameters|data)
The posterior is proportional to the product of the likelihood and prior (which we
will assume is independent for each parameter).

 p(θ |y) ∝ p(y |θ) p(θ) =
1

(∏i 2πσ2
i)

exp[−
1
2

∑N
i=1 (yi − mi(c; θ))2

σ2
i] ×

K

∏
k=1

p(θk)

The log posterior is like a “regularized” least squares fit. If the priors are assumed normal around
some typical mean, , then the “maximum a posteriori” (MAP) estimate arises from
minimizing a least squares term with an additional “penalty” term on the parameters.

θk ∼ N(θ̄k, ν2
k)

 −log p(θ |y) ∝
N

∑
i=1

(yi − mi(c; θ))2

σ2
+

K

∑
k=1

(θk − θ̄k)2

ν2
+ const

Posterior distribution: p(parameters|data)
• However: These relationships are just to connect to some familiar concepts.
• In UQ, we usually are not interested in point estimates.
• (and if we do make a point estimate, it’s usually the posterior mean, not MAP)

• Our real goal is uncertianty, which means the full posterior distribution
• Its mean, variance, and all higher moments

 p(θ |y) ∝ p(y |θ) p(θ) =
1

(∏i 2πσ2
i)

exp[−
1
2

∑N
i=1 (yi − mi(c; θ))2

σ2
i] × ΠK

k=1 p(θk)

Markov chain Monte Carlo (MCMC) sampling
• We want to calculate the posterior distribution. In high

dimensions, Monte Carlo sampling works best.

• sampling converges like , where N is # of samples

• How to sample from an arbitrary distribution?
• Approach: importance-biased random walk
• spend more time sampling high-probability regions
• (note: samples from a random walk are not independent)

1/ N

-2 -1 0 1 2

0
40
0

80
0

Markov chain

Parameter

S
am
pl
e

Histogram

Parameter

D
en
si
ty

-3 -2 -1 0 1 2 3

0.
0
0.
1
0.
2
0.
3
0.
4

Physics note: MCMC
• Sampling from a probability distribution p(x) is directly

analogous to statistical mechanics
• Sample Boltzmann distribution p(x) ∝ e-βE(x)

• -log p(x) is analogous to potential energy
• Or lattice gauge theory
• p(x) ∝ e-S[x]

• -log p(x) is analogous to the action
• Advanced Bayesian inference uses hybrid Monte Carlo

(HMC), just like lattice QCD
• Requires calculating gradient of p(x)
• Which for us means the gradient of the model output

(e.g., Bmad beam position) w.r.t. the parameters
• Differentiable Bmad would be very helpful

Metropolis MCMC algorithm
• Let the target distribution 𝜋(𝜃) be the posterior, p(𝜃|y)

• Construct a random walk as follows:
1. Start at point 𝜃

2. Propose moving to a new point 𝜃′ randomly, according to some easy to sample symmetric
distribution t(𝜃′|𝜃) (e.g., a Gaussian perturbation)

3. If this moves us to a higher probability point, 𝜋(𝜃′) > 𝜋(𝜃), accept the move to 𝜃′

4. If this moves us to a lower probability point, accept randomly with probability 𝜋(𝜃′)/𝜋(𝜃);
else reject and stay at the same point 𝜃

5. Either way, record the point you end up at to construct the Markov chain
6. Repeat

LANL

Code for
Bayesian regression

4/1/2021 EBM_MCMC3_ForPresentation - Jupyter Notebook

localhost:8888/notebooks/Research/Work/UQ/EBM_MCMC3_ForPresentation.ipynb 8/13

In [73]:

Add aerosol forcing scaling factor as an uncertain parameter, to see what effect this has on climate
sensitivity uncertainty.

In []:

In [217]:

Out[73]: metropolis (generic function with 1 method)

Out[217]: log_posterior (generic function with 2 methods)

function metropolis(lpdf, num_iter, x₀, step)
 D = length(x₀)
 chain = zeros(num_iter, D)
 chain[1,:] = x₀
 x, lp = x₀, lpdf(x₀)
 num_accept = 0

 for i = 2:num_iter
 chain[i,:] = x
 x′ = x + step .* randn(D)
 lp′ = lpdf(x′)

 if log(rand()) < lp′ - lp # Metropolis
 x, lp = x′, lp′
 num_accept = num_accept + 1
 end

 chain[i,:] = x
 end

 return (chain, num_accept/num_iter)
end

log_lik = -length(r)*log(√(2π)σ) - sum(@. r^2/(2σ^2)) # likelihood

function log_posterior(p)
 λ,d,α,T₀ = p
 log_post = -Inf

 if λ > 0 && d > 0 && α > 0 # parameters in range
 F2xCO₂ = 4.0 # forcing for doubled CO₂ [W/m²]
 lpri_λ = logpdf(LogNormal(log(3), log(2)/2), F2xCO₂/λ)
 + log(F2xCO₂/λ^2) # ECS prior + Jacobian (ECS = F2xCO₂/λ)
 lpri_d = logpdf(Normal(100, 25), d)
 lpri_α = logpdf(LogNormal(log(1), log(1.5)/2), α)
 lpri_T₀ = 0
 log_pri = lpri_λ + lpri_d + lpri_α + lpri_T₀ # prior

 σ = 0.1 # observational noise standard deviation [K]
 r = temp_obs - model(p)[midx] # data-model residual
 log_lik = sum(logpdf.(Normal(0,σ), r)) # likelihood
 log_post = log_lik + log_pri # posterior
 end

 return log_post
end

In [63]:

In [64]:

In [65]:

In [66]:

Out[63]:

Out[65]: model (generic function with 2 methods)

Out[66]: residual (generic function with 1 method)

forcing = convert(Array{Float64,2}, CSV.read("forcing_rcp85.txt", DataFrame, delim="
http://www.pik-potsdam.de/~mmalte/rcps/data/RCP85_MIDYEAR_RADFORCING.DAT

time_forcing = convert(Array{Int64,1}, forcing[:,1])
F = convert(Array{Float64,1}, forcing[:,9])

plot(time_forcing, F, color="orange", linewidth=2, legend=false, xlims=(1750,2100), y

forcing_non_aerosol = forcing[:,2] + forcing[:,3] + forcing[:,7] + forcing[:,8] # CO
forcing_aerosol = forcing[:,4] + forcing[:,5]; # aerosol direct + aerosol indirect

function model(p)
 λ,d,α,T₀ = p
 Δt = 31557600. # year [s]
 C = 4184000 * d # heat capacity/area [J/K/m^2]
 F = forcing_non_aerosol + α*forcing_aerosol
 T = zero(F)
 for i in 1:length(F)-1
 T[i+1] = T[i] + (F[i] - λ*T[i])/C * Δt
 end
 return T .+ T₀
end

midx = time_obs .- time_forcing[1] .+ 1 # model output indices corresponding to obse

residual(p, y) = y - model(p)[midx]

Optimizing control inputs
• Control c: currents or other inputs that the operator can specify

• Model m(c): the modeled system response to inputs (e.g., beam position)

• Objective: a metric of system performance (e.g., a loss function) to optimize

• (deviation of beam position from target position at BPMs)

• (e.g.,)

• Find control that optimizes objective:

• Solve using standard optimization algorithms (quasi-Newton, gradient descent, …)

ℒ(m(c)) = ∑i (z̄i − mi(c))2

z̄i = 0

c⋆ = arg minc ℒ(m(c))

Stochastic optimization for control inputs
• Control c: inputs that the operator can specify

• Parameters 𝜃: unknown system characteristics

• Assume we have inferred a distribution p(𝜃) representing parameter uncertainty (e.g. a posterior p(𝜃|y))

• Model m(c;𝜃): the modeled system response to inputs (e.g., beam position)

• Objective: a metric of system performance (e.g., a loss function) to optimize

• (deviation of beam position from target position at BPMs)

• Stochastic control aims to be robust to uncertainties in quantities we can’t estimate perfectly

• Find control that optimizes expected objective (average over Monte Carlo parameter samples {𝜃j}):

• Solve with a stochastic optimizer (designed to handle noisy objective functions)

ℒ(m(c; θ |y)) = ∑i (z̄i − mi(c; θ))2

c⋆ = arg minc 𝔼θ|y[ℒ(m(c; θ))]

≈
1
J

J

∑
j=1

N

∑
i=1

(z̄i − mi(c; θj))2

On optimal control methods
• There are many optimization methods floating around

• Bayesian optimization, gradient descent, quasi-Newton methods, …

• There are many ways to formulate beam control as an optimization problem

• Nonlinear loss minimization, expected utility maximization (with chance constraints),

robust optimization/control, classical control theory, reinforcement learning

• Probably a digression to discuss pros/cons in this talk, but we should discuss in the project

• The methods discussed here are adapted for this setting:

• There is a physical system model, which is much cheaper than real experiments

• We can solve control policies offline using the physical model (digital twin)

• The model is imperfect, but imperfections are learnable via data-model comparisons

• There are many variables to control; maybe many uncertain system parameters

• Decisions are one-off / non-sequential (if sequential, can extend to RL-like approaches)

Model emulation

Wikipedia

• We can only afford a limited number of Bmad simulations; hard to embed in Monte Carlo sampler
where many evaluations are required

• Can we estimate “what the model would have predicted at a new parameter setting” from an
ensemble of training simulation output, without actually running the model?

• “Response surface” emulation: interpolation to the rescue
• Gaussian processes (as in Bayesian optimization), neural networks, other regression approaches

4/1/2021 Conditional Gaussian Processes-Copy1 - Jupyter Notebook

localhost:8888/notebooks/Research/Work/UQ/Conditional Gaussian Processes-Copy1.ipynb 22/25

In [66]:

Out[66]:

atter(xt, yt, color="red", markersize=8, xlim=[0,15], ylim=[-3,3], legend=fa

4/1/2021 Conditional Gaussian Processes-Copy1 - Jupyter Notebook

localhost:8888/notebooks/Research/Work/UQ/Conditional Gaussian Processes-Copy1.ipynb 23/25

In [72]:

Out[72]:

σ = 1.0; λ = 2

Σtt = [σ^2 * exp(-((x1-x2)/λ)^2) for x1 in xt, x2 in xt]
Σpt = [σ^2 * exp(-((x1-x2)/λ)^2) for x1 in xp, x2 in xt]
yp = Σpt*(Σtt\yt)

Σpp = [σ^2 * exp(-((x1-x2)/λ)^2) for x1 in xp, x2 in xp]
Σp = Σpp - Σpt*(Σtt\Σpt')
Σp = Symmetric(Σp) + 1e-10I
σp = sqrt.(diag(Σp))

plot(xp, yp, lw=3, xlim=[0,15], ylim=[-3,3], legend=false, xlabel="Model in
scatter!(xt, yt, color="red", markersize=8)

4 model runs
Emulator

(interpolant / nonparametric regression)

Gaussian process regression as emulation

Wikipedia

• A Gaussian processes is a probability distribution on a space of functions
• Can be used for probabilistic interpolation / regression

• Draw, say, 1000 Gaussian random samples and plot them over “space”:
4/1/2021 Conditional Gaussian Processes-Copy1 - Jupyter Notebook

localhost:8888/notebooks/Research/Work/UQ/Conditional Gaussian Processes-Copy1.ipynb 20/25

In [69]:

Out[69]:

plot(xp, randn(length(xp)), lw=3, label="", tickfontsize=12, ylim=(-3,3))

Yi ∼ N(0,1)

4/1/2021 Conditional Gaussian Processes-Copy1 - Jupyter Notebook

localhost:8888/notebooks/Research/Work/UQ/Conditional Gaussian Processes-Copy1.ipynb 21/27

In [77]:

Out[77]:

σ, λ = 1, 1
μ = zero(xp)
Σ = [σ^2 * exp(-((x1-x2)/λ)^2) for x1 in xp, x2 in xp]
Σ = Σ + 1e-10I

plot(xp, rand(MvNormal(μ,Σ)), lw=3, label="", tickfontsize=12, ylim=(-3,3))
plot!(xp, rand(MvNormal(μ,Σ)), lw=3, label="", tickfontsize=12)
plot!(xp, rand(MvNormal(μ,Σ)), lw=3, label="", tickfontsize=12)

• A Gaussian processes is a probability distribution on a space of functions
• Can be used for probabilistic interpolation / regression

• Draw 1000 random variables, but correlated with each other; here are 3 draws:

σ = 1, λ = 1

Gaussian process regression as emulation

Cov(Yi, Yj) = σ2 exp[− (
Xi − Xj

λ)2]

Y ∼ N(0,Σ), Σij = Cov(Yi, Yj)

Wikipedia

• A Gaussian processes is a probability distribution on a space of functions
• Can be used for probabilistic interpolation / regression

• Draw 1000 random variables, but correlated with each other; here are 3 draws:

4/1/2021 Conditional Gaussian Processes-Copy1 - Jupyter Notebook

localhost:8888/notebooks/Research/Work/UQ/Conditional Gaussian Processes-Copy1.ipynb 21/25

In [55]:

Out[55]:

σ, λ = 1, 2
μ = zero(xp)
Σ = [σ^2 * exp(-((x1-x2)/λ)^2) for x1 in xp, x2 in xp]
Σ = Σ + 1e-10I

plot(xp, rand(MvNormal(μ,Σ)), lw=3, label="", tickfontsize=12, ylim=(-3,3))
plot!(xp, rand(MvNormal(μ,Σ)), lw=3, label="", tickfontsize=12)
plot!(xp, rand(MvNormal(μ,Σ)), lw=3, label="", tickfontsize=12)

σ = 1, λ = 2

Gaussian process regression as emulation

Cov(Yi, Yj) = σ2 exp[− (
Xi − Xj

λ)2]

Y ∼ N(0,Σ), Σij = Cov(Yi, Yj)

Gaussian process regression as emulation

Wikipedia

• A Gaussian processes is a probability distribution on a space of functions
• Can be used for probabilistic interpolation / regression

• Draw 1000 random variables, but correlated with each other; here are 3 draws:

Cov(Yi, Yj) = σ2 exp[− (
Xi − Xj

λ)2]

Y ∼ N(0,Σ), Σij = Cov(Yi, Yj)

4/1/2021 Conditional Gaussian Processes-Copy1 - Jupyter Notebook

localhost:8888/notebooks/Research/Work/UQ/Conditional Gaussian Processes-Copy1.ipynb 23/27

In [74]:

Out[74]:

σ, λ = 1, 5
μ = zero(xp)
Σ = [σ^2 * exp(-((x1-x2)/λ)^2) for x1 in xp, x2 in xp]
Σ = Σ + 1e-10I

plot(xp, rand(MvNormal(μ,Σ)), lw=3, label="", tickfontsize=12, ylim=(-3,3))
plot!(xp, rand(MvNormal(μ,Σ)), lw=3, label="", tickfontsize=12)
plot!(xp, rand(MvNormal(μ,Σ)), lw=3, label="", tickfontsize=12)

σ = 1, λ = 5

Gaussian process regression as emulation

Wikipedia

• We have seen that we can draw random vectors that have smooth behavior by
imposing a correlation over space (nearer points are more correlated)

• A Gaussian process is the continuum limit of this idea to random functions
• We can be Bayesian, and condition on “observed” data to get a posterior:

4/1/2021 Conditional Gaussian Processes-Copy1 - Jupyter Notebook

localhost:8888/notebooks/Research/Work/UQ/Conditional Gaussian Processes-Copy1.ipynb 28/28

In [92]:

In []:

Out[92]:

plot(xp, yp.+100, xlim=[0,15], ylim=[-3,3], legend=false, xlabel="Model inp

plot!(xp, yp1, lw=2)
plot!(xp, yp2, lw=2)
plot!(xp, yp3, lw=2)

scatter!(xt, yt, color="red", markersize=8)

CrossValidated (2019)

Y ∼ N(μ*, Σ*)
μ* = ΣptΣ−1

tt yt
Σ* = Σpp − ΣptΣ−1

tt Σtp

Gaussian process regression as emulation

Wikipedia

• We have seen that we can draw random vectors that have smooth behavior by
imposing a correlation over space (nearer points are more correlated)

• A Gaussian process is the continuum limit of this idea to random functions
• We can be Bayesian, and condition on “observed” data to get a posterior:

4/1/2021 Conditional Gaussian Processes-Copy1 - Jupyter Notebook

localhost:8888/notebooks/Research/Work/UQ/Conditional Gaussian Processes-Copy1.ipynb 27/28

In [86]:

Out[86]:

plot(xp, yp, lw=3, ribbon=σp, xlim=[0,15], ylim=[-3,3], legend=false, xlabe

plot!(xp, yp1, lw=2)
plot!(xp, yp2, lw=2)
plot!(xp, yp3, lw=2)

scatter!(xt, yt, color="red", markersize=8)

CrossValidated (2019)

Y ∼ N(μ*, Σ*)
μ* = ΣptΣ−1

tt yt
Σ* = Σpp − ΣptΣ−1

tt Σtp

Errors in variables
• We have assumed that the controls (e.g., currents) are perfectly known, because we set them

• But what if the true control is unknown (currents fluctuate randomly, or there is a persistent but unknown bias

between set point and realized current)?

• The model has noisy inputs in addition to noisy outputs

• We can treat the “true” controls as parameters to infer (“latent variables”)

• Probability model for set current as random perturbation of true current:

• Find joint posterior for parameters and true currents

Obtain parameter posterior by integrating out (“marginalizing over”) latent variables:

c̃d ∼ N(cd, ς2
d)

p(θ, c |y, c̃)

p(θ, c |y, c̃) ∝ p(y |θ) p(c | c̃) p(θ) p(c)

∝ exp[−
1
2

∑N
i=1 (yi − mi(c; θ))2

σ2
i] ×

K

∏
k=1

(θk − θ̄k)2

ν2
i

×
D

∏
d=1

(c̃d − cd)2

ς2
d

p(θ |y, c̃) = ∫ p(θ, c |y, c̃) dc

Do any of these uncertainties matter?
• So far we’ve been proceeding under the assumption that we know which parameters are

responsible for beam positioning, or Bmad model misfit

• We just have to quantify their effects

• What if we don’t know what matters?

• Magnet misalignments, transfer function, trim currents

• Can we go through a list of suspects, and identify or quantify their importance?

• In terms of influence on model prediction, or data-model misfit

• Characterizing the response of outputs to inputs is known as sensitivity analysis
• Traditional approach: “one-at-a-time” (OAT) parameter scan

• Pick a parameter, change its value over a range (fixing all other parameters at nominal)

• Doesn’t pick up any interactions between parameters

• Can be sample-inefficient (most of the time you aren’t learning about most parameters)

• Be aware of overconfidence: exploring parameters and stopping when one shows an effect

Accounting for uncertainty in sensitivity analysis
• OAT: change one parameter, holding all others fixed

• Alternative: change one parameter, sampling randomly over all other parameters (given a distribution)

• Accounts for uncertainty in the response of one parameter, due to variability in other parameters

Jantre et al. (2024)

Of all the climate-related parameters, the NPV of climate damages
is sensitive only to climate sensitivity (t2xco2) and not to any of the
other climate box model, land-use change, carbon box model, and
non-CO greenhouse gas forcing parameters. In Fig. 5D, we see that
the NPV of abatement costs is more sensitive to the initial growth
rate of the carbon intensity of production (gsigma) and the total
factor productivity parameter (ga0) than we found in the OAT
analysis in Table 2. The relatively small influence of the abatement
participation parameters (only partfracn has a total-order index
>1%) is a reflection of the low abatement in the BAU policy scenario
where most mitigation is deferred until after the 200 year horizon
of the NPV cost metrics. This policy scenario tends to be dominated
by climate damage costs.

Comparing the Sobol’ analysis result for the NPV cost metrics
between the expert and extended sets of parameters, we see
significant differences in the rank ordering of the sensitive

parameters in addition to the considerable increase in parameter
interactions in the extended parameter set. The principal lesson
here is that OAT analyses and the limited global analyses afforded
by the expert set of parameters fail to accurately portray the
controlling parametric sensitivities of the NPV of climate damages
and abatement costs in this DICE model policy scenario. More-
over, if the OAT analysis were used to inform investments in
further research related to the underlying uncertainties, key in-
terdependencies between the exogenous parameters would likely
be missed.

4.3. Sensitive parameters and interactions change with mitigation
strategy and time

In Fig. 6, we introduce the Sobol’ sensitivity analysis results for
a composite metric, the NPV of total costs (the sum of the NPV of

Fig. 5. Sobol’ sensitivity results for the NPV of climate damages (A and C) and the NPV of abatement costs (B and D). A and B use the expert set of parameters. C and D use the
extended parameter set. Filled nodes represent first-order sensitivity indices. Rings indicate the magnitude of the total-order indices. Shading and width of lines are the second-
order indices. The legend indicates the minimum and maximum indices shown in the figure. Results are from the BAU policy scenario.

M.P. Butler et al. / Environmental Modelling & Software 59 (2014) 10e29 19

Variance-based global sensitivity analysis (GSA)
• Sobol’ decomposition: Analysis-of-variance (ANOVA) to construct a model’s “uncertainty budget”

• Requires user to specify a probability distribution over uncertain inputs

• How much of the output uncertainty can be attributed to the uncertainty in a particular input?
• Or, how much could we reduce output uncertainty if we learned the true value of an input?

• How much does an input contribute directly, and indirectly through correlations with other inputs?
• Quantifies importance of (2-way, 3-way, …) interactions between input variables

• Contrast with “one-at-a-time” parameter scans
• Don’t identify contributions to output uncertainty, or detect interactions

• Specific advantages when GSA is coupled with an emulator:
• Fast, closed-form analytic solutions for sensitivity metrics

• Change assumptions about input uncertainties without new simulations

Butler et al. (2014)

Global sensitivity analysis, quantitatively
• How much would we reduce uncertainty in output Y, if we learned the value of the ith input, Xi?

• Difficulty: we don’t know the true value of Xi

• Uncertainty in output due to uncertainty in all inputs = Var(Y)
• Uncertainty in output, after learning the true value x of input Xi = Var~i(Y|Xi=x)
• Expected output uncertainty after learning true input, averaged over input uncertainty = Ei(Var~i(Y|Xi))
• Expected reduction in uncertainty after learning input i = Var(Y) - Ei(Var~i(Y|Xi))

• Also equal to Vari(E~i(Y|Xi)), via law of total variance
• Normalizing by the output variance gives the first-order sensitivity index, Si = Vari(E~i(Y|Xi)) / Var(Y)

• Nested expectations calculated by sampling, or (sometimes) analytically with an emulator of Y(X)

• We can define similar indices for interactions between pairs of variables, Sij

• The sum of first-order and interaction sensitivities is the total sensitivity index, Ti = E~i(Vari(Y|X~i)) / Var(Y)

• A large first-order sensitivity means it would be valuable to reduce uncertainty in that variable

• A small total sensitivity means that variable’s uncertainty is negligible (it does not influence output
uncertainty either directly, or indirectly through its interactions with other variables)

Code for global sensitivity analysis

In [97]:

In [100]:

In [32]:

In [35]:

In [98]:

In []:

Out[97]: 7-element Vector{Float64}:
 0.03939066510252126
 0.40554195179098723
 0.01921252733306706
 0.09714614847729588
 0.20368655561488538
 0.25741680541375433
 0.05968833771618758

Out[100]: 1.0820829914486987

Out[32]: randᵢ (generic function with 1 method)

Out[35]: T (generic function with 2 methods)

Out[98]: (0.33040334405407973, 0.39325921115615553)

Tᵢ = [T(model, d, i, 1000, 1000) for i=1:length(d)]

sum(Tᵢ)

function randᵢ(d, i, xᵢ)
 x = rand.(d)
 x[i] = xᵢ
 x
end

conditional draw on xᵢ
randᵢ(d, i, xᵢ) = [j==i ? xᵢ : rand(d[j]) for j=1:length(d)]
conditional draw on x₋ᵢ
rand!ᵢ(d, i, x!ᵢ) = [j==i ? rand(d[i]) : x!ᵢ[j] for j=1:length(d)]

Sobol' first-order sensitivity index
S(m, d, i, N) = var(mean(m(randᵢ(d,i,xᵢ)) for k=1:N) for xᵢ in rand(d[i],N))
 / var(m(rand.(d)) for j=1:N^2)

Sobol' total sensitivity index
T(m, d, i, N) = mean(var(m(rand!ᵢ(d,i,x!ᵢ)) for k=1:N) for x!ᵢ in (randᵢ(d,i,NaN) for j=1:N))
 / var(m(rand.(d)) for j=1:N^2)

S(model, d, 2, 10000, 10000), T(model, d, 2, 10000, 10000)

Global sensitivity analysis example

−76.0 −75.5 −75.0 −74.5 −74.0

39
.0

39
.5

40
.0

40
.5

theta x v

0.0

0.2

0.4

0.6

0.8

1.0

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●●
●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●●
●

●

●

●

●
●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ● ● ● ● ● ●

●

●

●
●

●
●

●

●

●

●

●

●
● ●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

● ●

●
●

●

●

●

●

●
●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

• Sensitivity of flooding to sea level rise and hurricane direction, speed, and intensity
• This does not mean these two inputs are correlated with each other (though they can be)
• Rather, nonlinear variations in the output may occur when two variables change together
• These effects would be invisible if the inputs were varied one-at-a-time

heading × velocity

Francom et al.
LA-UR-19-27244

Optimal experimental design
• Which experiments would give us the information we need to help us control the beam?

• Choose experiments whose data would reduce uncertainties the most?

• Or rather, most reduce the objective to the stochastic optimal control problem

Simulated data sets
from experiment A

Simulated data sets
from experiment B

• Uncertainty about parameter distribution given by entropy

• What experiment would most reduce the entropy (maximize information gain)

• Possible experimental outcomes are random, with probability distribution

• Observing an outcome gives a new distribution with entropy .

• We want to maximize information gain (entropy reduction)

• The problem is, we don’t know which outcome we will measure

• Choose to maximize expected information gain (EIG), averaged over possible outcomes

•

p(θ) H[θ] = 𝔼θ[log p(θ)]
d

p(y |θ, d)
y p(θ |y) H[θ |y]

H[θ] − H[θ |y]
y

d

EIG = 𝔼y|θ,d[H[θ] − H[θ |y]]

Optimal experimental design: Mathematics

• We need to identify controls (and their ranges) that matter to the beam position
• More expert elicitation, sensitivity analysis / parameter screening, …

• Perform UQ
• Are results Gaussian? Correlated? May inform approximations we make in the future

• Stochastic optimization
• Minimize expected loss via BFGS, gradient descent, BO, …

• Optimal experimental design
• How important are Bmad structural errors (biases, missing physics, …?)

• Keep adding things to Bmad? Some other approach
• Sequential / realtime decision making?

• Amortized myopic optimization (precompute policy: optimal solution conditional on state)
• Reinforcement learning (accounting for future decisions in present actions)

• RL with UQ: all state variables become belief states (infinite-dimensional distributions)

What next?

