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Relevant Developments from 4th ICFA Workshop

FPGA / RL at KARA

• Real-time training and deployment for betatron oscillations and microbunching instability

• Likely many practical aspects to learn from them

Many labs building out digital twin / ML-ops tools and infrastructure

• Trying to unify to common standards/tools/infrastructure (ISIS, SLAC, FNAL, ORNL, Jlab, RadiaSoft)

• Continual learning → demonstration at ALS for beam size correction

Differentiable simulations and modular ML models are clearly a major path forward for digital twins, model calibration, advanced diagnostics 

and integration into control

• Bmad-X demonstrations for 4D and 6D phase space reconstruction; Bmad Julia project

• Cheetah → effort to build python-wrapped simulation tool for fast/approximate differentiable simulations 

• LBNL → integrate modular surrogates into plasma simulation chain (e.g. just for plasma stages)

Many exciting applications of LLMs and computer vision (elog + measured data synthesis, LLM verbal commands for tuning, literature → 

chatbot, visual ID of beamline elements in tunnel)

Badger/Xopt being used at a lot of facilities: SLAC, AWA, ESRF, DESY

Timetable/slides
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https://www.indico.kr/event/47/timetable/
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Ecosystem of modular tools (can use independently)

Digital Twin Infrastructure

Substantial progress on deploying ML and Physics-based models and integrating with HPC in a portable way

Deployment on HPC
• Live physics simulations and ML models now linked between 

SLAC’s HPC system (S3DF)  and control system  

→ run with Kubernetes and Prefect
 

• Working with NERSC to swap between S3DF/NERSC 

resources
 

• Beginning work on MLOps aspects that will be used in continual 

learning research

LUME – simulation interfaces/wrappers in Python
 

lume-model – wraps ML models, facilitates calibration
 

lume-services – online model deployment and orchestration
 

distgen – flexible creation of beam distributions
 

Integration with MLFlow for MLOps
 

https://www.lume.science/ 
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Goal: Full Integration of AI/ML Optimization, Data-Driven Modeling, and Physics Simulations

Data 

processing

Data 

processing

FACET-II LCLS

Data 

processing

Data 

processing

FACET-II LCLS

Cluster Compute
(CPU,GPU)

Working on a facility-agnostic ecosystem for online simulation, ML modeling, and AI/ML driven characterization/optimization

Will enable system-wide application to aid operations, and help drive AI/ML development (e.g. higher dimensionality, robustness, 

combining algorithms efficiently)

Making good progress toward this vision with open-source, modular software tools



ML Inference Infrastructure - FNAL
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https://www.indico.kr/event/47/contributions/534/attachments/477/1110/Presentation4-malapa.pptx 
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ML Inference Infrastructure - ISIS

https://www.indico.kr/event/47/contributions/511/atta

chments/497/1159/ICFA-4-MLOPS-TALK.pdf 

https://www.indico.kr/event/47/contributions/511/attachments/497/1159/ICFA-4-MLOPS-TALK.pdf
https://www.indico.kr/event/47/contributions/511/attachments/497/1159/ICFA-4-MLOPS-TALK.pdf


Digital Twin Infrastructure – ORNL / JLab
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moreassumed knowledge of machine

Model-Free 

Optimization

Observe performance change after a 

setting adjustment

 → estimate direction or apply 

heuristics toward improvement

Model-guided 

Optimization

Update a model at each step

 → use model to help select the next 

point

Global Modeling + 

Feed-forward Corrections

 

→provide initial guess (i.e. warm start) 

→ provide insight to operators

→model-based control

gradient descent

simplex

ES

Bayesian optimization

reinforcement learning

ML system models +

inverse models

Tuning approaches leverage different amounts of data / previous knowledge

 → suitable under different circumstances
 
 

J. Kirschner

less

General strategy: start with sample-efficient methods that do well on new systems, then build 

up to more data-intensive and heavily model-informed approaches. 



Sextupole tuning at FACET-II

2x efficiency of acceleration in plasma

Longitudinal phase space 

tuning on LCLS

Hanuka et. al. PRAB , 2021

Higher-precision optimization possible 

when including hysteresis effects in model

BO on sys. with 

hysteresis
Hybrid BO on 

sys. with 

hysteresis

Duris et. al. PRL , 2020

Roussel et. al. PRL , 2022

Roussel et. al. PRAB , 2021

FEL pulse energy tuning at LCLS Loss rate tuning at SPEAR3

Multi-objective 

Bayesian Optimization

target

Many successes with Bayesian Optimization (+ algorithmic improvements)

Algorithms being implemented/distributed in Xopt: https://github.com/ChristopherMayes/Xopt

Comprehensive review of advanced BO for particle accelerators: https://arxiv.org/html/2312.05667v2  

https://github.com/ChristopherMayes/Xopt
https://arxiv.org/html/2312.05667v2


ESRF Results

RCDS for CB prototype beam commissioning  

The Trust region BO (TuRBO) method is now in regular use for lifetime maximization.

Slide courtesy S.M. Liuzzo et al., LER 2024

https://indico.cern.ch/event/1326603/contributions/5773963/attachments/2799269/4894488/LER_2024.pdf



Bayesian optimization of emittance at LCLS-II

• Repeatedly used Xopt and regular BO for emittance tuning on OTR0H04

• Used pyemittance for adaptive emittance measurements

o Tuning parameters are SOL1, SOL2, SQ1, CQ1, SQ2, CQ2

o Working on including matching into the objective
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Combining GP Modeling with Differentiable Physics

Modeling accuracy increases

Optimization performance increases

R. Roussel, et. Al. Phys. Rev. Lett. 128, 204801

Learn both hysteresis properties and 

beam response simultaneously using 

two step modeling



Leveraging Online Models for 

Faster Optimization

Combining existing models with BO 

→ important for scaling up to higher dimension
 

Even prior mean models with substantial inaccuracies 

provide a boost in optimization speed

Prototyped on LCLS injector

variables: solenoid, 2 corrector quads, 6 matching quads

objective: minimize emittance and matching parameter

regular Bayesian

 optimization

model prediction returns to prior

prior mean from 

models with different 

fidelity

https ://arxiv.org/abs/2211.09028 https ://arxiv.org/abs/2403.03225  

https://arxiv.org/abs/2211.09028
https://arxiv.org/abs/2403.03225
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→ Design Gaussian Process kernel from expected correlations between inputs (e.g. quadrupole magnets)

→ Take the Hessian of model at expected optimum to get the correlations  

vertical emittance

 tuning @SPEAR3

No measured data needed ahead of 

time, just a physics model of system

J. Duris et al., PRL, 2020 

A. Hanuka, et al., PRAB, 2021

FEL tuning @LCLS

Bayesian Optimization with Correlated Kernel

Including correlation between inputs enables increased sample-efficiency and results in faster optimization
→ kernel-from-Hessian enables easy computation of correlations even in high dimension



Efficient Emittance Optimization with Virtual Objectives

• Instead of tuning on costly emittance measurements directly: learn a fast-executing model online for 

beam size while optimizing → learn on direct observables (e.g. beam size); do inferred “measurements” (e.g. emittance)

• New algorithmic paradigm leveraging “Bayesian Algorithm Execution” (BAX) for 20x speedup in tuning

simulation

experiment

Paradigm shift in how tuning on indirectly computed beam measurements (such as emittance) is done, with 20x improvement over 
standard method for emittance tuning. → Now working to integrate into operations. 

→Also now working to incorporate more informative global models /priors rather than learning the model from scratch each time.

model is learned

 on-the-fly

Convergence of beam size prediction error 

gives practical indicator of optimization 

convergence (no need to do direct emittance 

measurement until the end)

Found equivalent quality to hand-

tuning in about 70 iterations (estimate 

this would take a few minutes with 

computationally optimized routine)

https://arxiv.org/abs/2209.04587 

https://arxiv.org/abs/2209.04587


Autonomous Control: Xopt/Badger Contributions

Roussel, R., et al. (IPAC 2023)

R. Roussel

https://inspirehep.net/files/959311c92c49f8f67a72b7fcc57b0147


Deployment: Xopt and Badger

Many optimization algorithms

- Genetic algorithms (NSGA-II, etc.)

- Nelder-Mead Simplex

- Bayesian Optimization

- Bayesian Exploration

- Trust-region BO

- Learned output constrained BO

- Interpolating BO

- See more BO algorithm 

details/capabilities here: 

https://arxiv.org/abs/2312.05667 

https://christophermayes.github.io/Xopt/ 

https://christophermayes.github.io/Xopt/algorithms/ 

→Has been used for online optimization at numerous facilities (LCLS/LCLS2, FACET-II, ESRF,  AWA, NSLS-II, FLASHForward) 

→ Working to make interoperable with other software

https://github.com/slaclab/Badger 

User interface, I/O with machine

Xopt: houses optimization algorithms

Python interface

https://arxiv.org/abs/2312.05667
https://christophermayes.github.io/Xopt/
https://christophermayes.github.io/Xopt/algorithms/
https://github.com/slaclab/Badger


ESRF loss rate reduction

LCLS FEL pulse energy

• Can specify constraints on settings and outputs (e.g. avoid dark current, beam losses, etc)

• Trust-region method allows conservative high-dimensional tuning (e.g. used >100 sextupoles at ESRF)

• Working on integrating global model priors → not learning from scratch each time

• Working to make compatible with RL problems + gymnasium

0.04 to 0.14 mJ in SXR → 15% better than hand-tuning

41hr → best lifetime observed ever (in record speed of 15 minutes)

injection efficiency improved by 5%



Reinforcement Learning
  

Appealing for moving toward large-scale, 

comprehensive control of accelerators 

→ Many similarities to robotics applications

→ Ability to learn from many observations

→ Multi-modal, high-dimensional data
 



Reinforcement Learning

  

• Appealing for moving toward large-scale, 

comprehensive control of accelerators 
 

• Free Electron Laser at LCLS is sensitive to 

focusing, trajectory; perturbing 

beam/feedbacks too much results in beam 

losses
•  

• Using data-driven surrogates and 

differentiable sims to train agents
  

• Iteratively add more data, targets and 

variables:

• Photon pulse intensity

• Beam phase space images, spectra

• Focusing magnets, RF cavities, undulator

• Similar accelerator designs → facility-

agnostic agents?
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~28 focusing magnets for FEL pulse intensity

(many more variables to include: steering, rf cavities, undulator, drive laser)



Fast-Executing,  Accurate System Models

29

Accelerator simulations that include nonlinear and 

collective effects are powerful tools, but they can 

be computationally expensive

ML models are able to provide fast approximations to simulations

 (“surrogate models”)

< ms execution speed

106 times speedup

10 hours on 

thousands of 

cores at NERSC! Edelen e t al., NeurIPS 2019

Long history now of using ML modeling to enable accurate predictions of accelerator system responses with unprecedented speeds

https://ml4physicalsciences.github.io/2019/files/NeurIPS_ML4PS_2019_90.pdf


Fast-Executing,  Accurate System Models
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< ms execution speed

106 times speedup

Bringing simulation 

tools from HPC 

systems to 

online/local 

compute

Online prediction

Model-based control

Control prototyping

Experiment planning

ML models are able to provide fast approximations to simulations

 (“surrogate models”)

Edelen e t al., NeurIPS 2019

Long history now of using ML modeling to enable accurate predictions of accelerator system responses with unprecedented speeds

https://ml4physicalsciences.github.io/2019/files/NeurIPS_ML4PS_2019_90.pdf


• ML models trained on detailed physics simulations with nonlinear collective effects

• Accurate over a wide range of settings → calibrate to match machine measurements

• Provide initial parameters for downstream model

prototyping 

optimization

algorithms

In Regular Use: Injector Surrogate Model at LCLS 

ML models trained on simulations and measurements have enabled fast prototyping of new optimization algorithms, facilitated rapid model 
adaptation under new conditions, and can directly aid online tuning and operator decision making

Automatic adaptation of models and identification of sources of 

deviation between simulations and as-built machine

interactive model widget 

and visualization tools

ML model matches 

simulation under 

interpolation 

Simulation and ML model trained 

on it are qualitatively similar to 
measurements under interpolation 

(setting combinations reasonable 

distance from training set)



E. Cropp et al., in preparation

Hand-tuning in seconds vs. tens of minutes
 

Boost in convergence speed for other algorithms

Can work even under distribution shift

• Round-to-flat beam transforms are challenging to optimize 
→ 2019 study explored ability of a learned model to help

• Trained neural network  model to predict fits to beam 
image, based on archived data

• Tested online multi-objective optimization over model (3 
quad settings) given present readings of other inputs

• Used as warm start for other optimizers

• Trained DDPG Reinforcement Learning agent and tested on 
machine under different conditions than training

Warm Starts from Fast Online ML Models



Combining BO with Warm Starts from Online Physics Models



Finding Sources of Error Between Simulations and Measurements

Many non-idealities not included in physics simulations:

static error sources (e.g. magnetic field nonlinearities, physical offsets) 

time-varying changes (e.g. temperature-induced phase calibrations)

Want to identify these  to get better understanding of machine performance 

àML model allows fast / automatic exploration of error sources in high dimension

10

First studies look promising à current/future work to investigate robustness and extend to larger subsystems + more complicated setups

injector
settings

laser image

adaptable calibration
transforms

longitudinal/
transverse phase space

Without 
calibration

With calibration

Inputs
Laser radius
Laser spot sizes
Pulse length
Charge
Solenoid
L0A phase 
L0B phase
SQ quad
CQ quad
6 matching quads

Outputs
Beam size (x,y)
Emittance (x,y)
Bunch length

output beam
scalars

ML modeling enables rapid identification of error sources between idealized physics simulations and real machine
à path toward gaining new insights into machine performance (could also help inform future designs)

Example: calibration 
offset in injector 

solenoid strength found 

automatically with 

neural network model 

(trained first in 
simulation, then 

calibrated to machine)

frozen neural network 
layers trained on 
simulation

Speed and differentiability of ML models enables rapid identification of error sources between 
idealized physics simulations and real machine 



Finding Sources of Error Between Simulations and Measurements

Many non-idealities not included in physics simulations:

static error sources (e.g. magnetic field nonlinearities, physical offsets) 

time-varying changes (e.g. temperature-induced phase calibrations)

Want to identify these  to get better understanding of machine performance 

àML model allows fast / automatic exploration of error sources in high dimension
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First studies look promising à current/future work to investigate robustness and extend to larger subsystems + more complicated setups

injector
settings

laser image

adaptable calibration
transforms

longitudinal/
transverse phase space

Without 
calibration

With calibration

Inputs
Laser radius
Laser spot sizes
Pulse length
Charge
Solenoid
L0A phase 
L0B phase
SQ quad
CQ quad
6 matching quads

Outputs
Beam size (x,y)
Emittance (x,y)
Bunch length

output beam
scalars

ML modeling enables rapid identification of error sources between idealized physics simulations and real machine
à path toward gaining new insights into machine performance (could also help inform future designs)

Example: calibration 
offset in injector 

solenoid strength found 

automatically with 

neural network model 

(trained first in 
simulation, then 

calibrated to machine)

frozen neural network 
layers trained on 
simulation

Differentiable simulations allow direct learning of calibrations while being constrained by the expected physics

J.P. Gonzalez-Aguilera

Same approach can be used with differentiable physics simulations

https://accelconf.web.cern.ch/ipac2023/pdf/WEPA065.pdf



Multifidelity Optimization

36

N=

2e4

Number of Particles (N) 2e4 2e5 2e6

Space Charge Grid Size 16 32 64

Execution time ~1 min ~2.5 min ~25 min

σx  (um) 1026 1018 1017

σy  (um) 654 623 614

Norm x emit (um) 9.26 8.87 8.77

• Information theoretic 
approach to simulations

• Learn correlations 
between different 
model fidelities

• Use multi-fidelity 
Bayesian optimization 
to select model fidelity 
and next optimization 
variables

N=

2e5

N=

2e6

E. Cropp



Better Data Sampling:

Bayesian Exploration

adaptive sampling

learning 
constraints

proximal
biasing

R. Roussel et. al. 
Nat. Comm. 2021
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Enables sample-efficient 

characterization of high-dimensional 

spaces, while respecting both input 

and output constraints

Efficient 

Characterization with 

Bayesian Exploration

Enables sample-efficient 
characterization of high-dimensional 

spaces, while respecting both input and 
output constraints



• Used Bayesian Exploration for efficient high-dimensional characterization (10 
variables) of emittance and match at 700pC: 2 hrs for 10 variables compared 
to 5 hrs for 4 variables with N-D parameter scan
  

• Data was used to train neural network model of injector response predicting x-
y beam images. GP ML model from exploration predicts emittance and match. 
 

• Example of integrated cycle between characterization, modeling, and 
optimization → now want to extend to larger system sections and new setups

Use of Bayesian exploration to generate training data was sample-efficient, reduced burden of data cleaning, and resulted in a well-
balanced distribution for the training data set over the input space. ML models were immediately useful for optimization.
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transverse phase space

Automatic Exploration

(constrained to useful values 

of emittance and match)

Comprehensive ML 

Models of Injector

Setting changes on 10 variables (solenoid, bucking coil, corrector quads and matching quads)

x-y emit, 

match, 

and 

beam 

images

FACET-II Injector

x

y

https ://www.nature.com/articles/s41467-021-25757-3

Efficient Characterization with Bayesian Exploration



Phase Space Reconstruction with Differentiable Tracking Simulations

Differentiable pipeline for reconstructing 6D phase space 

distribution using neural network parameterization

Reconstruct 4D phase space 

distribution + approx. energy 

spread from simple beamline 

diagnostic and 10 measurements

Simulation
Experiment

Confidence estimates

ML combined with differentiable simulations opens up a new paradigm for constructing detailed phase space 
diagnostics in a way that is computationally-efficient and sample-efficient

https://arxiv.org/abs/2404.10853 

https://journals.aps.org/prl/abstract/10.
1103/PhysRevLett.130.145001 

https://arxiv.org/abs/2404.10853
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.130.145001
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.130.145001


Phase Space Reconstruction with Differentiable Tracking Simulations 

ML combined with differentiable simulations opens up a new paradigm for constructing detailed phase space 
diagnostics in a way that is computationally-efficient and sample-efficient

Roussel, R, et al. https://arxiv.org/abs/2404.10853 

Have now extended to 6D phase space

• 20 measurements / ~15 minutes analysis time

• ~75x faster than conventional approach

https://arxiv.org/abs/2404.10853


Summary

• Many activities in digital twin infrastructure to learn from / build on

• Continual deployment of simple models for feed-forward corrections has 

had success, including online updating (e.g. ALS)

• Badger/Xopt being used widely in community

• Suites of algorithms for faster characterization / model calibration are 

reaching maturity and being expanded upon

• Bayesian exploration, differentiable simulations, multi-fidelity calibration

41



Thanks for your attention!

Any questions?

Thanks to the core team at SLAC working on various digital 

twin and AIML technologies and infrastructure, and many 

other collaborators!



Backups



Distribution Shift is a Major Challenge in Particle Accelerators

Many sources of change over time:

• Deliberate changes in beam configuration (e.g. beam charge)

• Unintended drift in initial conditions (including in unobservable 

variables), diurnal temperature/humidity changes, etc

• Time-dependent action of feedback systems

Reliable uncertainty estimates and model adaptation methods are key for putting online models to use operationally
Need fast ways of obtaining characterization data from accelerator

unseen region

  Example: beam size prediction and uncertainty estimates under drift from a neural network 

Uncertainty estimate from neural network ensemble does not cover prediction error, but does give a qualitative metric for uncertainty 

Time (fs)
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Summary/Conclusions

• Particle accelerators stand to benefit substantially from 

the development and deployment of AIML for modeling 

and control

• Faster optimization, new capabilities in beam 

customization, human-AI interaction

• High impact for science that is supported by 

particle accelerators (and translations to 

industry/medicine)

• Now scaling up small-scale demos to tackle larger 

problems, making algorithms more robust, developing 

deployment infrastructure, and bringing into routine 

operation

→ Many interesting problems to tackle, and we 

welcome collaborations!
 

→ Accelerators are also interesting platforms for 

AIML research!
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Opportunities for AIML Accelerator Research in 

Accelerators

(mix of needs from science side + compelling areas in AIML)
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• Pushing to higher-dimensional algorithms (more comprehensive, 

precise tuning); incorporation of multiple, multi-modal output beam 

targets

• Sample-efficient adaptation across setups  and over time needed

(different charges, beam phase space, multi-bunch)

• Enabling fundamentally new capabilities in beam physics / photon 

science

• FACET-II “extreme beams” → highly sensitive

• Precise dynamic control over beam

• Comprehensive online system modeling + ML-based optimization

• Physics sims + ML surrogates being deployed on local HPC connected 

to control system (digital twins)

• AI and human feedback → human-AI interaction in the   

control room is a current area of study 

• Transfer learning between accelerators

→ Similar layouts, component design, beam diagnostics, user needs (e.g. 

scan two bunches)

domain transfer

fast dynamic beam

 customization

AIML + human 

feedback

FACET-II

LCLS



Roussel et. al. Nat. Comm. 2021

Efficient, safe optimization algorithms

Output constraints learned on-the-fly

ground truth validity  probability

Combining physics and ML for better performance
ML-enhanced diagnostics

Rapid analysis/virtual diagnostics

Shot-to-shot predictions at beam rate

Online prediction with physics sims 

and fast/accurate ML system models

Adaptation of models and identification of sources of 

deviation between simulations and as-built machine

Challenging problems: e.g. sextupole tuning

Current Areas of AIML R&D for Accelerators at SLAC

AI/ML enables fundamentally new capabilities across a broad range of applications → highly promising from initial demos.

Hysteresis-aware optimization

BO on sys. with 
hysteresis

Hybrid BO on 
sys. with 

hysteresis

Adhere to constraints and balance multiple targets

C. Emma, et al.  – PRAB 21, 112802 (2018)

Many solutions put into reusable open-source software (e.g. Xopt/Badger) demoed at many facilities

Roussel et. al. PRL. 2022

Differentiable simulations + ML for 6D 

phase space reconstruction

Roussel et. al. PRL. 2023

Anomaly detection

(1) Developing new approaches for accelerator optimization/characterization and faster higher-fidelity system modeling, (2) developing 
portable software tools to support end-to-end AI/ML workflows, (3) helping integrating these into regular use

Broad Research Program at SLAC in AI/ML for Accelerators

https://github.com/ChristopherMayes/Xopt


Sample Number (Time Ordered)

Neural network with quantile 

regression predicting FEL pulse 

energy at LCLS

unseen 

regions

test 

data

L. Gupta

BNN Predictions

ASTRA Simulation

White area 

– values 

left out of 

training

A. Mishra et. al. , PRAB, 2021
LCLS injector transverse phase space  (ensemble)

Scalar parameters for the 

LCLS-II injector

(Bayesian neural network)

Essential for decision making under uncertainty (e.g. safe opt., intelligent sampling, virtual diagnostics) 
Current approaches 

• Ensembles

• Gaussian Processes

• Bayesian NNs

• Quantile Regression

longitudinal phase space

(quantile regression + ensemble)

In-distribution

Out-of-distribution 

O. Convery, et al., PRAB, 2021

Uncertainty Quantification / Robust Modeling



Motivation / Need for AIML for Particle Accelerators

Two major categories of need for AI/ML in accelerators:

• New fundamental beam dynamics capabilities: unprecedented beam parameters, finely-detailed customization and 

characterization for experiments

• Facility operations: efficiency of tuning and quality of beam delivery → increase science output, reduce time-to-discovery

   

Accelerator and Beam Physics Grand 

Challenges
 

Intensity – “How do we increase beam intensity by orders of magnitude?”

Quality – “How do we increase the beam phase space density by orders of 
magnitude?”

Control – “How do we measure and control the beam distribution down to 
the individual particle level?”

Prediction – “How do we develop predictive ‘virtual particle accelerators’”

AI/ML features prominently in the ABP Roadmap to address these 
challenges: https://science.osti.gov/hep/-

/media/hep/pdf/2022/ABP_Roadmap_2023_final.pdf 

New approaches for beam prediction, measurement, and control are needed to meet the demands for current and 
future accelerator applications and scientific user facilities.

Operational/Facility Challenges

Increasingly complex facilities, challenging setups, tighter tolerances 

on beam for experiments 

(e.g. exotic FEL setups, PWFA)

Need for on-demand dynamic control during experiments

 (e.g. scanning beams in XPCS, compensation for drift) 

Currently rely on extensive hand-tuning 

(e.g. 400 hours per year at LCLS → 10 experiments, $12M)

Limited diagnostics, high dimensional parameter spaces, few accurate 

models →  challenge to understand machine, do data analysis, do experiment 

planning

Mix of operational needs for tuning/control: stable delivery, fast switching 

between setups, commissioning new capabilities

https://science.osti.gov/hep/-/media/hep/pdf/2022/ABP_Roadmap_2023_final.pdf
https://science.osti.gov/hep/-/media/hep/pdf/2022/ABP_Roadmap_2023_final.pdf
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Why Is This So Difficult?

Costs of detailed beam representations

Histogramming scales poorly with number of 

dimensions, 𝑁𝑏𝑖𝑛𝑠 ∝ 𝑛𝐷

Reasonable resolution, 𝑛 = 100
For a 6D distribution, 𝑁𝑏𝑖𝑛𝑠 = 1012!

Information compression

{< 𝑥 >, 𝜎𝑥}

2D image

1D projection(s) Scalar values

Often required by analysis constraints (analytical 

tractability, optimization simplicity, etc.)

6D distribution



Community development of re-usable, 

reliable, flexible software tools for 

AI/ML workflows has been essential to 

maximize return on investment and ensure 

transferability between systems
  

 Modularity has been key: separating 

different parts of the workflow + using 

shared standards

Modular, Open-Source 

Software Development

Different software for different tasks:
 

Optimization algorithm driver (e.g. Xopt)
 

Visual control room interface (e.g. Badger)
 

Simulation drivers (e.g. LUME)
 

Standards model descriptions, data formats, 

and software interfaces (e.g. openPMD)
 

Online model deployment (LUME-services)

Online Impact-T simulation and 

live display; trivial to get running 

on FACET-II using same software 

tools as the LCLS injector 

LCLS

FACET-II

standard

data 

format

LUME

More details at https://www.lume.science/ 

Simulation

Optimizer

Modular open-source software has been essential for our work.  

https://www.lume.science/
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