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Relevant Developments from 4t" ICFA Workshop

FPGA / RL at KARA

* Real-time training and deployment for betatron oscillations and microbunching instability

* Likely many practical aspects to learn from them

Many labs building out digital twin / ML-ops tools and infrastructure

* Trying to unify to common standards/tools/infrastructure (ISIS, SLAC, FNAL, ORNL, Jlab, RadiaSoft)

* Continual learning = demonstration at ALS for beam size correction

Differentiable simulations and modular ML models are clearly a major path forward for digital twins, model calibration, advanced diagnostics

and integration into control

* Bmad-X demonstrations for 4D and 6D phase space reconstruction; Bmad Julia project
* Cheetah - effort to build python-wrapped simulation tool for fast/approximate differentiable simulations

* LBNL = integrate modular surrogates into plasma simulation chain (e.g. just for plasma stages)

Many exciting applications of LLMs and computer vision (elog + measured data synthesis, LLM verbal commands for tuning, literature -

chatbot, visual ID of beamline elements in tunnel)

Badger/Xopt being used at a lot of facilities: SLAC, AWA, ESRF, DESY

Ti ble/slid
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SKIT

Hard problem: Microbunching Instability

=

Longitudinal position

-

Unstable coherent synchrotron radition (THz)
production

m Self-interaction of bunch with emitted radiation

® Nonlinear dynamics, several timescales/frequency
components

® Main timescales: O(10 us), O(10 ms), with
Ts = O(100 us)

® Expensive to simulate!

Longitudinal momentum

Charge density
o

Perfect candidate for real time RL!

Longitudinal position

https://www.indico.kr/event/47/contributions/537/attachments/500/1 1 73/presentation.pdf
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KAPTURE-2 HighFlex 2

signal digitization bunch labeling

Schottky diode

analog pulse signal : ‘ W
50 GHz -2 THz ; i ) S
Low-latency high-throughput sampling Custom modular
500 MS/s, 8 channels readout card
Measured latency without fiber, aurora
re-training 2.5 pis protocol 64b/66b

Xilinx Versal
VCK190

I decide action
Low-latency RL
inference platform
1.6 TeraFP
operations/s

Feedback system
execute action

Low-level RF amplitude and e
phase modulation control serial
every 6 revolutions

0.5-2.5GeV
110.4 m
2.7 MHz rev. freq.

c 1 Gb Al engines: feature extraction o® Actor @

_g c ch GPU ethernet and agent inference - o g_

&9 . aad ¢ De- -9 .

38 e ® Critic / ARM processor: slow-control =9 o ~eAction | B

So S e - Expected re-train agent > g g

S 4 NO o - 5 FPGA: data preparation = - 2
s £3 o @4 ~e cumulative Se- g

'g a A o ~—. reward e

Sx 5+ o Depends on

&= O e 26s decimation

Courtesy Andrea Santamaria Garcia

https://www.indico.kr/event/47/contributions/537/attachments/500/1 1 73/presentation.pdf
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Electron Beam Stability at the Advanced Light Source

0 Typical User Operation At ALS
I I

50 <};( _ ——

e Beam Current:

ID Gap [mm)|

— Top-off operation keeps e —
current variations below 1mA o - ' ' .
» Beam Position: _
— Orbit feedback and ID feed- g 0.3%

forwards stabilize source 102
positions to sub-micron level
» Beam Size:

— |ID skew quadrupole feed- g
forwards stabilize source size

— Requires lookup tables |

ver.@ BPM(10,2)

ID BPM [pm]

1s avg @ Bea.m.lline3.1

|
06:00
Nov 19, 2023-Nov 20, 2023

| | |
12:00 18:00 00:00

. PN . i . . ) ,
BERKELEY LAB "u‘z’\ ADVANCED LIGHT SOURCE Operational Integration of ML Techniques for Beam Size Control in the ALS | MaLAPA'24

4


https://www.indico.kr/event/47/contributions/529/attachments/513/1191/ALS_beam_size_control.pdf

Acquiring Training Data

» Data Sampling:
— Derived from two years of user operation data
—Ensures representative operational conditions

« Data Acquisition and Recording:
— Gathered during accelerator physics shifts
—Independent exercise of each insertion device
—All ID read-backs and beam size recorded at 10Hz
—EPICS based archiver system
—12-hour, 27 ID parameters (466k x 27 samples)

» Operational Challenges:

—High value of AP time leads to nighttime shifts

—ID setup not optimized for fast ramping (ID
amplifier trips, local ID FF trips)

—Implementation of watchdog with for
operational oversight very important

m BERKELEY LAB

{fﬁ ADVANCED LIGHT SOURCE

Training Data Acquisition

Vertical gap [mm)]

Horizontal offset [mm)]

1 1.2 1.4 1.6 1.8
time [h]

(3]

Beamsize [pm]

1 1.2 1.4 1.6 1.8 2
time [h]

Operational Integration of ML Techniques for Beam Size Control in the ALS | MalLAPA’24
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Neural Network Architecture

« Model Input/Output:

—27 ID input parameters
—1 beam size prediction output
— Dispersion wave used to correct beamsize

« Studied Neural Network Types:
—RNN, CNN, MLP
o MLP Hyperparameter Search:

—Number of hidden layers: 3
—Neurons per Layer: 128/64/32
— Activation Function: Tanh

« Final Hyperparameter Search:
—Weight decay: 1E-3
—Dropout rate: 0.2

» Takes about 15min on RTX2060 GPU

,\:} ADVANCED LIGHT SOURCE

il BERKELEY LAB

ID Gaps EPU Gaps and Phase

S\

[ 128 J
e
[ a2

@ Beamsize

Hyperparameter Search Space

{1,2,3}
{2"},1<n<9
{ReLU, Tanh, Sigmoid}

Number of Hidden Layers
Number of Neurons per Layer
Activation Function

Weight decay
Dropout rate

{100"},1<n<5
{0.2,0.4,0.6,0.8}

Operational Integration of ML Technigues for Beam Size Control in the ALS | MaLAPA'24 9
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Impact of Training Data Size on Model Performance

* How much training time is required for
perfect model?

» Chronologically Split Data:
—Can not randomly select datapoints for
evaluation (oversampling at 10Hz)
« Evaluation Procedure:

—Remove 1h randomly from the data set for
evaluation

—Choose [1,...11]h for training

—10 seed for each configuration

— Evaluate RMSE on evaluation data

» Observed Convergence:
—Reasonable convergence at first

—Trend suggests infeasible amount of data
required to reach noise level

1~

{‘% ADVANCED LIGHT SOURCE

il BERKELEY LAB | =)

=
©

=
0

=
=1
1
l

Evaluation RMSE [pm)]

=
=]
T

0.5

2 4 6 8 10
Size of Training Set [h]

Operational Integration of ML Technigues for Beam Size Control in the ALS | MalLAPA'24 11
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Continual Online Fine-Tuning

ID Gaps EPU Gaps and Phase

Calculate beam size if

Source Data

Wy%

Inference
and
Feedback
setup

Predictions ML Model

=
st

Deployment

“Anchor” weights by
starting from pre-trained
model each cycle

EPICS archiver
appliance

parameters (number of
epochs, initial loss, etc.)

no correction would
have been applied

Curation Surated

Logs

Beamsize

Monitoring

Phoebus GUI to set

Outer loop - . 0

for continual soe st buffer size, training
, Triggers ..

learning parameters, training

interval, etc.

Training
data set

Sliding
window buffer

Trained
Model

Training and

e

Archiving of training

m BERKELEY LAB

17
Q\,‘E ADVANCED LIGHT SOURCE

K. Rajput, “Model up-keep with continual learning”, MaLAPA’'24

Operational Integration of ML Techniques for Beam Size Control in the ALS | MaLAPA'24 12
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Continual Online Fine-Tuning

‘— Uncorrected — Corrected —— Predicted

 Online Fine-Tuning:

. . §
— Circular buffer to record model input R T T rTIe T ey Ty e
—Train base model on data in buffer only 40 o 0 - o —
—Start from base model each cycle to avoid time s
46 Buffer length
runaway :

—Uncorrected beamsize calculated with DWP

» Parameters:
—Typically 1k samples in buffer 250 300 350 400

time [s|

—Takes less then 100 epochs and about 1s o _ Buffer length

» Feedback vs Feedforward:

— Online retraining acts as feedback
— Buffer size controls impact of FB vs. FF

|
900 950 1000 1050 1100 1150
time [s|

13

”
"g_‘} ADVANCED LIGHT SOURCE Operational Integration of ML Technigues for Beam Size Control in the ALS | MalLAPA’24
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Digital Twin Infrastructure

e 2
Ecosystem of modular tools (can use independently) )
v f
: s3 « EPICS CAPV,
LUME — simulation interfaces/wrappers in Python | v D@ ! l
we | 0D Q EPICS
lume-model — wraps ML models, facilitates calibration s g Posgress I g
ML?FO\'V T ? T EPICS CAPVA
lume-services — online model deployment and orchestration u % H -
distgen — flexible creation of beam distributions i _’6 @ e m\ -
s MLFlow Prefect Stack (W::picedvaogén RES A
| Other Clients
Integration with MLFlow for MLOps E [ ‘

L https://www.lume.science/ ) @< @ Kubernetes Pod
Live physics simulations and ML models now linked between Deployment ;e:m;;;,c @D rovemeissos
SLAC’s HPC system (S3DF) and control system \. Y J
- run with Kubernetes and Prefect :

. . EPICS EPICS
Working with NERSC to swap between S3DF/NERSC mO Secure EPICS /O MO
resources E om om

gun L1X T l
Beginning work on MLOps aspects that will be used in continual usl e e .
learning research BClsomev B“243Gev  14Gev  undulator

Substantial progress on deploying ML and Physics-based models and integrating with HPC in a portable way



https://www.lume.science/

Goal: Full Integration of AI/ML Optimization, Data-Driven Modeling,and Physics Simulations

Working on a facility-agnostic ecosystem for online simulation, ML modeling, and Al/ML driven characterization/optimization

Will enable system-wide application to aid operations, and help drive Al/ML development (e.g. higher dimensionality, robustness,
combining algorithms efficiently)

¥ Model Prediction Displays Model Output Predictions (e.g. beam images, scalars) HPC cluster
> 4. s (e.g. SDF at SLAC,
</ ] g
) g it - - NERSC at LBNL)
< 43 c3 Online Modeling
C
° Measured Input Data Data High-fidelity Physics
(accelerator settings, [NEISHILS Simulations
E input diagnostics) 1T Cluster Compute
T (CPU,GPU)
2 Adaptive ML Models
o 3
9
™
ol Measured Output Data Data
2 (scalars, images processing T
2 describing the beam) Online Optimization g
o and Characterization Tools &
T D
o
. C Archives =
= Q X Active Learning + (Measurements, == &
& Efficient Exploration Predictions, and RS
& |3
b5 g Models) | g
= 5t Model and ML-Based 2
o v KR Changes in Accelerator Settings Optimization !
ﬁ Online Control GUI | J ‘

Making good progress toward this vision with open-source, modular software tools



ML Inference Infrastructure - FNAL

4
LT TTEEEEEEEEEEEE s e E s e EEEEEEm \\
Fermi General Network_ -~ AD General Network X Controls Network
P *
s % AD-K FPGA
Elastic Analysis Faclty —_— . C AR :
pemmmee e Y ... . . T |
U .. AU MinlO 53 5 L4 4 Sk
o (miflow | (miffow | mlfl.;w > LA
i+ | Projects | | Tracking |

{mlﬁ.;w' miflow \

Models | |Repositories)

Accelerator Control
S’ < : 1 \_ System

-—

Contrals Firewall

https://www.indico.kr/event/47/contributions/534/attachments/477/1 |1 1 0/Presentation4 -malapa.pptx
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ML Inference Infrastructure - ISIS

Serving as

Individual Dev Model Model ht Frontend
workspaces Environment Archiving Deployment s dp:ints Client
®
© @
t ’ lk b _»P 1F TensorFlow
——Jupyter——»_jupyterhub  —smlT/ow — 6 PyTorch
S’
@
User 1
° \4
[ ] A - - - -
S _— m
e I o
NFS
- —=
User 2 EPICS PVAserver  Phoebus client
s_
—>»Ju pyte r—
N’ * Mostly off the shelf!
@
User3 » Makes delivery of new models faster

* Further “low-hanging-fruit” for
automation/templationg

e R —— * Dovetails nicely into other MLOps
Technolo initaitves.

Facilities C il S
T X @isisneutronmuon

ISIS Neutron and . - o
uk.linkedin.com/showcase/isis-neutron-and-muon-source MMLMKMMQMDMJM
N 4 4 M| (O L

Muon Source
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Digital Twin Infrastructure —= ORNL / JLab

Infrastructure Overview  MLserver

GitLab D9 <
« Code repository Storage — NJ
 Actions -
+ Verify new code
* Deploy
0 SNS Servers ORNL Servers
EPICS Q + Train and test model  © * Gitlab
EFWLAE v - Store data g * lcarus
SNS / VA =
2
[0)
Proxy Server _ Z
SciOptControlToolkit { )
A : 4
Data Acquisition Edge computer Operator Developer
« Acquire data « Data compression and buffer «  View results + Scripts
+  Modelinference « Real-fime Model inference . Operate models « GUIs
« Display results . Stop / Pause *© Mifow
* Rollback to
OAKR seaLLaTIon previous model —
%Naﬁoi(alLa{BgE SOURCE (W_ Bloklond) J’e,'ffe@on Lab

15



Tuning approaches leverage different amounts of data / previous knowledge
-> suitable under different circumstances

less

assumed knowledge of machine

E—— more

( ) (
Model-Free Model-guided Global Modeling +
Optimization Optimization Feed-forward Corrections
\/ J- Kirschner
Observe performance change after a
setting adjustment Update a model at each step
> esti directi | = provide initial guess (i.e. warm start)
h e'st.:mate lrc::qlon or apply = use model to help select the next = provide insight to operators
euristics toward improvement point - modekbased control
\. J \
gradient descent Bayesian optimization ML system models +
simplex reinforcement learning inverse models
ES

General strategy: start with sample-efficient methods that do well on new systems, then build

up to more data-intensive and heavily model-informed approaches.
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Many successes with Bayesian Optimization (+ algorithmic improvements)

FEL pulse energy tuning at LCLS
=20

m,
-
n

o
wn

X-ray pulse energy (
=
o

o
o

0 10 20 30 40 50
Step number

Duris et. al. PRL, 2020

Multi-objective

=
8]

Beam loss rate [mA/min]
=] =
n =)

e
=)

0 50

Loss rate tuning at SPEAR3

Sextupole tuning at FACET-II

2o
¥
4
HE

} = GP w/ physics basis-function

' == GPw/data ML-Il
""" Simplex
=== RCDS

160

140

120

Beam Size (um)
-
8

100 150

Step
Hanuka et. al. PRAB, 202 |

Bayesian Optimization

Applied magnetic field
Moy = {Hy, Hy, ..., Hi}

go e

+
: prettd
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Roussel et. al. PRAB, 2021

200 ©

0 5 10 15 2
Iteration

Higher-precision optimization possible
when including hysteresis effects in model

* Hysteresis model
Magnetization = 10" 5
xp = M(Hy,) €
E
+ Gaussian process — 10°4
maodel 4:
g
Beam measurement
}{‘:f(xi)+s - 10—1 -
Roussel et. al. PRL, 2022 0

BO on sys. with Hybrid BO on
hysteresis sys. with
hysteresis

100 150 200

Iteration

50

Algorithms being implemented/distributed in Xopt: :
Comprehensive review of advanced BO for particle accelerators: :

Latent Space MSE

2x efficiency of acceleration in plasma

—

o
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a 6 8 )

0 2
Iteration
.
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https://github.com/ChristopherMayes/Xopt
https://arxiv.org/html/2312.05667v2

ESRF Results

The Trust region BO (TuURBO) method is now in regular use for lifetime maximization.

10-15 MINUTES INSTEAD OF 100 MINUTES FOR EQUIVALENT OPTIMIZATION

Ba\d&ar + XOpt https://arxiv.org/pdf/1910.01739.pdf
\N/
201 el manual "run by hand”
f —— simplex
181 ; —— upper-confidence-bound

—— turbo #1

Trust Region Bayesian
turbo #2 RO
—— turbo #3

=
(=]
L

A

normalized
Lifetime [h]

144 |
| fitfzg‘:féd turbo rand. sext
121 optimization turbo large rand. sext #1
104 procedure turbo large rand. sext #2
‘ ] —— turbo (input: turbo #2) |
o Ta)] o Ty} o [Te] o Ty}
o — mM <t o — m <t
S o o o — — — —
<) =] =] =] S) S) o o

time [hour:minutes]

Slide courtesy S.M. Liuzzo et al., LER 2024
https://indico.cern.ch/event/ 1 326603/contributions/5773963/attachments/2799269/4894488/LER _2024.pdf




Bayesian optimization of emittance at LCLS-II

* Used pyemittance for adaptive emittance measurements
o Tuning parameters are SOLI, SOL2,SQI,CQI,SQ2,CQ2
o Working on including matching into the objective

200 —
~~= norm_emit_x
5 175 norm_emit_y
E e -~ sqrt_norm_emit_xy
E. hand-tuned y
E 125 = hand-tuned x
L]
g
O AN oo et s e LS i g s et s s o g
- Solt
©
e
2 050
[}
LY
= 025
0.00 -~ T T T T
0 10 20 30 40

Xopt iteration




Combining GP Modeling with Differentiable Physics

Learn both hysteresis properties and
beam response simultaneously using

two step modeling

Applied magnetic field
Ho. = {Ho, Ha

* Hysteresis model

Magnetization
x, = M(Hy,)

* Gaussian process
model

Beam measurement
Yi = flae) +¢

VIAD,| (mm)

Beam Charge (nC)

0.6 -

Modeling accuracy increases

« Cyclel
Cycle 2

« Cycle3
== Model

N:

0 200
L

400
L

Measurement Index

&= Cyclel
s Cycle 2
1 = Cycle3

600

Current (A)  *
°

-2

-20 -15 -1.0 -0.5 0.0
Current (A)

0.5

1.0

1.5 20 -20 -15 -1.0 -05 0.0 0.5 1.0
Current (A)

15 2.0

Optimization performance increases

B* =20

5 = 0.1

101 o4
v

100 d
L T

~— GP,H,=0.1 =—— H-GP, H,=0.1

~=' GP,H;=0.4 == H-GP, H,=0.4

0 50 100 150 200 0 50 100 150 200

Iteration Iteration

R. Roussel, et. Al. Phys. Rev. Lett. 128, 204801

20



Leveraging Online Models for Py | =
Faster Optimization o | [Symtem ’ - o
-1
Combining existing models with BO iy
-> important for scaling up to higher dimension RF Gun data

Solenoid
Laser-Heater

Prototyped on LCLS injector
variables: solenoid, 2 corrector quads, 6 matching quads
objective: minimize emittance and matching parameter

Emittance
N\ Screens/Wires

RF ST model prediction returns to prior
Deflector —]
S 0 \ = = Constant Prior
. regular Bayesian \ —— NN, r=-0.1, MAE=1.5mm
£ -5 Optimization l| = NN, r= 0.4, MAE=1.2mm
£ ~24 B —— NN, r= 0.7, MAE = 0.6 mm
2 -10 £ \ —— NN, r= 1.0, MAE=0.0mm
\
- N
2 —151 —— surrogate (Ground Truth) v \
e |= Model2 prior mean from o 1 \,_,
P —201, : : s ~
0.460 0.465 0.470 0.475 0.480 0.485 models with different S~o
SOL1:solenoid field scale (kG*m) . e —
fidelity

Even prior mean models with substantial inaccuracies 50

provide a boost in optimization speed



https://arxiv.org/abs/2211.09028
https://arxiv.org/abs/2403.03225

Bayesian Optimization with Correlated Kernel

—> Design Gaussian Process kernel from expected correlations between inputs (e.g. quadrupole magnets)

”
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(b) lsotroplc kernel

g

Uncorrelated Kernel
Correlated Kernel

g

o
£
Mean Steps to Converge

o

-6-4-20 2 4 6 3 3
z Dimensionality

(c¢) Correlated kernel

—> Take the Hessian of model at expected optimum to get the correlations

e —
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Quadrupole current [A]

Beam loss rate [mA/min]

=
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=
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= GP w/ physics basis-function
—-= GP w/ data ML-Il
""" Simplex
=== RCDS
0 50 100 150
Step

J. Duris et al., PRL 2020
A. Hanuka, et al., PRAB, 2021

gun L1X

XTCAV
N

L1SJ L3-linac

BC1

L2-linac

BC2

250 MeV 43 GeV 14 GeV undulator

FEL tuning @LCLS

vertical emittance
tuning @SPEAR3

No measured data needed ahead of
200 time,just a physics model of system

Including correlation between inputs enables increased sample-efficiency and results in faster optimization

- kernel-from-Hessian enables easy computation of correlations even in high dimension



Efficient Emittance Optimization with Virtual Objectives

* Instead of tuning on costly emittance measurements directly: learn a fast-executing model online for
beam size while optimizing - learn on direct observables (e.g. beam size); do inferred “measurements” (e.g. emittance)
* New algorithmic paradigm leveraging ‘“Bayesian Algorithm Execution” (BAX) for 20x speedup in tuning
(a)
3 Iteration 10
Select virtual | ——» [ Sampleb _ i
Update GP model injectorvconﬁg: size sf::\s?::n 1 2.25 =~ BAX Emittance ) T PR By a X
[SOL1, CQ1, 5Q1] posterior 120 ! BO Emittance S 2.0011M = TR Lso g ]
\ ! \ BAX Beam Size Error E
= \ 1 ey 2.00 ~—— Simplex Emittance § | W | : o)
y . =8 \ Vi & Min. of BAX Emittance & 150 \ i ‘h‘"g'y; i .
Iterate until optimal \;’1()0 1 ’ ‘ ~ 1754 £ \\f ARt i S—Y
5 injector config (with lowest N \ / / g 5 — e
Query ma'chme emittance) is found mE k\ \\ 7 / é 1.50 FL00 0 100 200 L
(expenstye) s 80 AN ,’ g = 3 Number of Beam Size Function Queries
) S0 ¢ A & . d
© : by-y 1.25 . simulation
H 60 XcRlary I 5 | 6 . ———r Convergence of beam size prediction error
Select queryod £ “ 0 B o TT0 250 500 750 1000 1250 ives practical indicator of optimization
most information P £ Ny ¥ Quadrupole Strength (kG) Number of Beam Size Function Queries g p dtod f di p .
about opnnnf\ial_ e convergence (no need to do direct emittance
o sy 38 model is learned measurement until the end)
G \ Optimization of emittance on model posterior 800
on-the-fly o 1 Il [ Hand-Tuned Emittance
—— Observed Emittance
S-Band RF i Iteration 90 g8 | ~ - preer Bound on Optimal | g5 o 2
. Accelerator QI‘";“;C}““% Wire ' 50N Moo 0 ac Found equivalent quality to hand-
ki Sections D 120 St s o R (. : EZ  tuningin about 70 iterations (estimate
== Posterior M & Lagn 2™ : . }
@ g = G:;rlz)r'lrui:“ 2 61 400£3 g this would take a few minutes with
= il 3 g 2B . Lo .
#—[ . ][ = ]~/ = 2 100 £ 23 computationally optimized routine)
/ 8 g ° 200 & &
UE) \ & A | < I
g 80 I/
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, /A *\,_ ’,f 3 1 —t N e e 10
. - -7 20 0 60 8 100 hitbs:/Jarxi 220904
(not drawn to scale) 60| X-Plane Number of Beam Size Function Queries
—6 —4 -2

Paradigm shift in how tuning on indirectly computed beam measurements (such as emittance) is done, with 20x improvement over
standard method for emittance tuning. > Now working to integrate into operations.

- Also now working to incorporate more informative global models /priors rather than learning the model from scratch each time.
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Autonomous Control: Xopt/Badger Contributions R. Roussel
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https://inspirehep.net/files/959311c92c49f8f67a72b7fcc57b0147

Deployment: Xopt and Badger

Xopt: houses optimization algorithms

t é(oﬁt Xopt.step()

Pass sample(s) to be evaluated

xopt:
max_evaluations: 6480 Generator Evaluator
= VOCS - Generates sample - Evaluates
+  Defines variables, polnts objective function
generator: objectives and

constraints

name: cnsga
population_size: 64
population_file: test.csv Retrieve result(s), handle errors, add data to generator, store results etc

output_path: .

siatuaters ot resources.<est_funceions.mme.ovsivere 12Ny Optimization algorithms
FU:ZEZHE::E:ELW . - Genetic algorithms (NSGA-II, etc.)
) - Nelder-Mead Simplex
e - Bayesian Optimization .
T 2 ] Bazes,-a,, Efp,o,aﬁo,, * Badger GUI interface
objeﬁive[?: z;—fiflr\sw?‘]umlzz, y2: MINIMIZE} - Trust-region BO . . .
o - Learned output constrained BO User interface, I/O with machine
e o oy - Interpolating BO
constants: {a: dummy_constant} - See more BO algorithm h ://chri herm ith io/X
details/cap.abilities here: h hristonherm ithub.io/X leorithm
Python interface https:/larxiv.or 2312 hetps://github.com/slaclab/Badger

—> Has been used for online optimization at numerous facilities (LCLS/LCLS2, FACET-II, ESRF, AWA, NSLS-II, FLASHForward)

- Working to make interoperable with other software


https://arxiv.org/abs/2312.05667
https://christophermayes.github.io/Xopt/
https://christophermayes.github.io/Xopt/algorithms/
https://github.com/slaclab/Badger

Badger v0.11
History Run  BadgerOpt-2023-08-27-223758.yam!
Run Monitor Routine Editor

Evaluation History Plot Type X Axis

0.04 to 0.14 mJ in SXR = 15% better than hand—tuningf /

41hr =2 best lifetime observed ever (in record speed of |5 minutes) el
injection efficiency improved by 5%

Can specify constraints on settings and outputs (e.g. avoid dark current, beam losses, etc)
Trust-region method allows conservative high-dimensional tuning (e.g. used >100 sextupoles at ESRF)

Working on integrating global model priors = not learning from scratch each time
Working to make compatible with RL problems + gymnasium




Reinforcement Learning

Appealing for moving toward large-scale,
comprehensive control of accelerators

—> Many similarities to robotics applications
—> Ability to learn from many observations

—> Multi-modal, high-dimensional data

Gu, et al., 2016

§ I ;\v\
- = . 2

Nagabandi, et al., 2019

¥ =

target beam
parameters or images

Control
Policy

present machine
settings

new machine

settings Spectra

gun L1X Gas detector
l : ; XTCAV
VCC L1S L2-linac L3-linac \
BClsoMev B“243Gev  14Gev  undulator



Reinforcement Learning

2:

.ggtt;gon Lab

Appealing for moving toward large-scale, Cathode and RF gun
. RF accelerating cavities
comprehensive control of accelerators Focusing magnets
E L i Linearizing cavity Chicane (beam compression) Undulator (e- beam to photons)
Free Electron Laser at LCLS is sensitive to o / /
1 4
. . . . » photon beam to 7
focusi ng, tra]ecto rys Perturbmg 250 MeV 4.3 GeV 14 GeV *  experiment
. \ - stations
beam/feedbacks too much results in beam b v
Injector Main Accelerator Sections

losses

~28 focusing magnets for FEL pulse intensity

Using data-driven surrogates and
(many more variables to include: steering, rf cavities, undulator, drive laser)

differentiable sims to train agents

|teratively add more data, targets and *| —— Predicted (NN surrogate) -
H —~ M d =, /
variables: T casure E /
. : z F Y
*  Photon pulse intensity G g
o 2 08+
*  Beam phase space images, spectra £ W £ //
Q os-
*  Focusing magnets, RF cavities, undulator % | | ' i 2 /
o L L] 1 o .-
Similar accelerator designs = facility- / i | e
0 |
agnostic agents? Samples (increasing time, several hours of tuning) Quad LI21:21 |



Fast-Executing, Accurate System Models

Accelerator simulations that include nonlinear and
collective effects are powerful tools, but they can
be computationally expensive

Simulation Measurement

Relative coergy (Me'V)

Redative evergy (Ve
3 © &

Me'/

HRelative emorgy (MeV)

A0 0 %

Loogitudinal postod pm)

10 hours on

thousands of
cores at NERSC!

ML models are able to provide fast approximations to simulations
(“surrogate models”)

Meural Netwark

Linac sim in Bmad with collective beam effects

Scan of 6 settings in simulation

ST | AR} M | W 1309 o

L1 Phase 40 20 -251

10,49 GaV

deg

L2 Phase S 0 414 deg

L3 Phase <10 10 0 deg

L1Voltage 50 110 100 percent
percent
percent

b ah N

P [nebsthveed

L2Voltage 50 110 100
L3 Voltago 50 110 100
< ms execution speed

108 times speedup

Edelen et al. NeurlPS 2019

Long history now of using ML modeling to enable accurate predictions of accelerator system responses with unprecedented speeds



https://ml4physicalsciences.github.io/2019/files/NeurIPS_ML4PS_2019_90.pdf

Fast-Executing, Accurate System Models

ML models are able to provide fast approximations to simulations
(“surrogate models”)

Bringing simulation
tools from HPC
systems to
online/local
compute

Meural Netwark

el

M o rokat

Linac sim in Bmad with collective beam effects

5 (Pelbiive)

Scan of 6 settings in simulation
. Simulation
N N o T .,
13.08 Ga\v
L1 Phase -40 20 -25.1 deg o
L2 Phase S 0 414 deg i
L3 Phase -10 10 0 deg
L1Voltage 50 110 100 percent
L2Voltage 50 110 100 percent

L - I R

Moo LI
B relalres

P [nebatieed

Control prototyping
. ) L3Votage S0 110 100
Experiment planning < ms execution speed

{

Online prediction 108 times speedup
Model-based control

Edelen et al. NeurlPS 2019

Long history now of using ML modeling to enable accurate predictions of accelerator system responses with unprecedented speeds



https://ml4physicalsciences.github.io/2019/files/NeurIPS_ML4PS_2019_90.pdf

In Regular Use: Injector Surrogate Model at LCLS

Laser-Heater

* ML models trained on detailed physics simulations with nonlinear collective effects
* Accurate over a wide range of settings > calibrate to match machine measurements

* Provide initial parameters for downstream model Spectrometer

Emittance
y > Screens/Wires

_ OTR2

Deflector

Simulation Neural Network y Profile

040
035

: ’w-ﬂh“" -7- 01
E " Prototyplng//" 030

ML model matches z;

| optimizatjon simulation under E°* E o4 g o Simulation and ML model trained
Bl o~ ith rf ™ 3o . o .
.| "~ dlgorithms interpolation o i o0 on it are qualitatively similar to
- / 005 . .
il N\ / 07 07 ool £ measurements under interpolation
‘ N _ §s; et W 9 M @ (setting combinations reasonable
S 14 o 141 o NN distance from training set)
o o o, IMPACT.T + 12 e 0, IMPACT-T N '
E10 + 0y meas. £ 10 +  Ox meas. *
% o8] T N -§ 081 09
E o6 E 06 _ 08
20 B 0] 2
£ g E o7 + .,
o 02 o 024 E ,.'.
-0.005 f:trlli‘l 0005 0.0 0.0 z o6
0as | to.lse ol é7| ol.ssF. Idokfe )0-50 044 045 046 047 048 049 050 o t
. . . ntegrated Solenoid Fiel -m Integrated Solenoid Field (kG-m) + Measure:
interactive model widget * W (rom sm)
and visualization tools Automatic adaptation of models and identification of sources of P LS Eeeisiie
044 04s 046 047 048 049 0s
deviation between simulations and as-built machine SR e

ML models trained on simulations and measurements have enabled fast prototyping of new optimization algorithms, facilitated rapid model

adaptation under new conditions, and can directly aid online tuning and operator decision making



online

Warm Starts from Fast Online ML Models E Cropp et al, in preparation

5 E ! - -

. ] & £ 5 . . . .

2 ._ H : — Can work even under distribution shift

F —H Jr—

/"- Y w ,
,f" Y - Train 0.12 Train
. drifting inputs quads for flat —— s Test (20d test) 100 Test (2nd test)
— e ) 2
L beam transform “-._ new quad settings § 007
4 Gun RF read backs . 0.10 distribution <
(phase and amplitude) ~, shift é 0.050
g \\‘ ).05 S 0.025
g Virtual Cathode Image Beam Statistics on Screen: | “‘. Pareto
g Statistics (spot size, intensity) o, D] front 0.00 - - 000030 55 60 3
,S 5, [ ] 10 l-L; s 20 I.?-s 30 Gun Voltage (MV
§ Other Magnet Settings o ~. g \““ aser Spot o, (pixels)
£ (solenoid, steering) pixel intensity \ y -
e \
- , X,y centroids | Oy
Flat Beam Quads (3) / NN start point
/

initial solution
from neural
network model

~ e
T Multi-Objective Genetic Algorithm

* Round-to-flat beam transforms are challenging to optimize
—> 2019 study explored ability of a learned model to help fiie-guniiig
* Trained neural network model to predict fits to beam ‘“"
image, based on archived data

hand tune
00

* Tested online multi-objective optimization over model (3 i
quad settings) given present readings of other inputs w

700

* Used as warm start for other optimizers

Hand-tuning in seconds vs. tens of minutes

* Trained DDPG Reinforcement Learning agent and tested on Boost in convergence speed for other algorithms
machine under different conditions than training



Combining BO with Warm Starts from Online Physics Models

Used combination of online physics simulation and Bayesian optimization algorithms to aid LCLS-II injector commissioning
-

Readings from machine via EPICS

—» Hand over to ML-based optimization for fine tuning
injector settings, laser profile from VCC image

Xopt LCLS-II Emittance Optimization 2022-12-04

-
=}

¥ o emitx «»| Model learns 7
norm_emit_y %
0.8 ~¥— sqrt_norm_emit_xy e On_the_ﬂy /
emittance and beam sizes along z ;
uni (NO prior 4
0.6 4
fuei data) |

OTROHO04
N

(=]
>

[=]
[N]

(=]
=}

Bayesian optimization #

Measured emittance (mm-mrad)

=}

2 4 6 8 10 12 14 16 18

i, Xopt iteration

LCLS-II live sim: run on HPC and display in control room 0 43/1 00 Be:zirsmlt'tfnfcetyet Obm'?e.d dfmng
Updates every 3-8 mins, space charge included, uses LUME-IMPACT Yex ’ : —njeciol commissong

d ve, 0.57/1.00

N Adjust settings / ranges with insight from predictions —

06-Dec-2022 01:53:37
OTRS HTR 330 EMIT

despite extensive previous hand-tuning

Physicists” intuition aided by detailed online physics model = simple example of how a “virtual accelerator” can aid tuning

HPC enables fundamentally new capabilities in what can be realistically simulated online



Finding Sources of Error Between Simulations and Measurements

Many non-idealities not included in physics simulations: el .
static error sources (e.g. magnetic field nonlinearities, physical offsets) g: T 'n“q";’:SCTT .
time-varying changes (e.g. temperature-induced phase calibrations) ;&30-8 T .
Want to identify these to get better understanding of machine performance §Zj )
2 ML model allows fast / automatic exploration of error sources in high dimension 2 Zz ZZ’/‘;’;‘;’; o

T T T T T
0.45 0.46 0.47 0.48 0.49 0.50

Integrated Solenoid Field (kG-m)
frozen neural network

. . adaptable calibration layers trained on i
Example: calibration transforms _ simulation "
offset in injector - S 'L';z::sradius ' 0, NN N
1 =124 _
solenoid strength found injector outrlaut beam Laser spot sizes £ : Z lr:]/l:aASCT T N
automatically with settings scalars Pulse length g:;gq”;sze ) =109 x Meas.
neural network model Charge : ' & os
: ) . Solenoid Emittance (x,y) c
(trained first in LOA phase Bunch length § 051
simulation, then LOB phase 2 041
calibrated to machine) zg‘;‘:aa‘; Z 02
laser image longitudinal/ 6 matching quads 0o With calibration
transverse phase space 044 045 046 047 048 049 050

Integrated Solenoid Field (kG-m)

Speed and differentiability of ML models enables rapid identification of error sources between

idealized physics simulations and real machine




Finding Sources of Error Between Simulations and Measurements

Same approach can be used with differentiable physics simulations

True offsets Predicted offsets

n
r2
rs
=== true offsets

offsets (mm)

6,
8,
85
=== true tilts

tilts (mrad)

T . : T ‘ .
0 1000 2000 3000 4000 5000 -0 - [} -0 -
n_iter o ).P. Gonzalez-Aguilera

https://accelconf.web.cern.ch/ipac2023/pdf/WEPAQ65 .pdf

Differentiable simulations allow direct learning of calibrations while being constrained by the expected physics




Multifidelity Optimization

GP ModelUpdate

1.0 1 = Posterior mean
. " . Posterior confidence region
f: objective function 0.51 ¢ Training data
EWEEIU I x: opt. variables = 007 -~~~ Ground truth '
Evaluation s: fidelity parameter 051 \\,_/
-1.0 s

* Information theoretic @ x
approach to simulations S
% o]
* Learn correlations % o
between different
model fidelities T

Acquisition Function Computatlon & Optimization

+ Use multi-fidelty I N

Bayesian optimization Space Charge Grid Size

to select model fldellty Execution time ~| min ~2.5 min ~25 min

and next optimization

variables o, (um) 1026 1018 1017
s, (um) 654 623 614
Norm x emit (um) 9.26 8.87 877

E. Cropp



Efficient
Characterization with
Bayesian Exploration
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Efficient Characterization with Bayesian Exploration

N\  Setting changes on 0 variables (solenoid, bucking coil, corrector quads and matching quads)

¥ images

A

v

Automatic Exploration . v :
(constrained to useful values |« L Y - xey emit
. g 3 " ’
of emittance and match) ; s ) ) ; - —— match,
/ § g E a é 8 z% :% i and
S o | 3 1 5 3 - —— beam

!
%

FACET-II Injector

Models of Injector

[ Comprehensive ML ]

transverse phase space

* Used Bayesian Exploration for efficient high-dimensional characterization (10
variables) of emittance and match at 700pC: 2 hrs for 10 variables compared
to 5 hrs for 4 variables with N-D parameter scan

* Data was used to train neural network model of injector response predicting x-
y beam images. GP ML model from exploration predicts emittance and match.

* Example of integrated cycle between characterization, modeling, and
optimization 2 now want to extend to larger system sections and new setups

Predicted Measured

https/ Iwww.nature.com/artides/s41467-021-25757-3

Use of Bayesian exploration to generate training data was sample-efficient, reduced burden of data cleaning, and resulted in a well-

balanced distribution for the training data set over the input space. ML models were immediately useful for optimization.



Phase Space Reconstruction with Differentiable Tracking Simulations ™ ="

https:/ljournals.aps.orglprllabstract/10.
1103/PhysRevLett 30.145001

Differentiable pipeline for reconstructing 6D phase space Reconstruct 4D phase space
distribution using neural network parameterization distribution + approx. energy
Neural Network Proposed sl Diffwentable Beam Dyoanics Sirwlaton | Smaions Seees oo spread from simple beamline

Parameterized Transform Particle Distribution —

=

Reconstructed

Initial Distribution Gradient calculation

ooty o diagnostic and |10 measurements

Samples
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Optimization Step
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ML combined with differentiable simulations opens up a new paradigm for constructing detailed phase space

diagnostics in a way that is computationally-efficient and sample-efficient


https://arxiv.org/abs/2404.10853
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.130.145001
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.130.145001

Phase Space Reconstruction with Differentiable Tracking Simulations

Have now extended to 6D phase space
e 20 measurements | ~15 minutes analysis time
* ~75x faster than conventional approach

Transverse Deflecting
Ql Q2 Q3 Q4 Cavity (vertical) Dipole YAG2

YAG1
Focusing Scanning
Quadrupoles Quadrupole

" m Temporal structure likely
to laser homogenization
. - . A optlcs

Magnetization due to
solenoid focusing

ky (1/m?) 2.2 -0.7 0.7 k1 (1/m?) 2959 -0.7 0.7

T.D.C.:off &

» T.D.C.: off
DIPOLE: off  foe

DIPOLE: on

T.D.C.: on

DIPOLE: off TD.C.:on

DIPOLE: on

— Measured - - Predicted
Roussel, R, et al. https://arxiv.org/abs/2404.10853

ML combined with differentiable simulations opens up a new paradigm for constructing detailed phase space

diagnostics in a way that is computationally-efficient and sample-efficient


https://arxiv.org/abs/2404.10853

Summary

*  Many activities in digital twin infrastructure to learn from / build on

*  Continual deployment of simple models for feed-forward corrections has
had success, including online updating (e.g. ALS)

*  Badger/Xopt being used widely in community

*  Suites of algorithms for faster characterization / model calibration are
reaching maturity and being expanded upon

. Bayesian exploration, differentiable simulations, multi-fidelity calibration

41



Thanks for your attention!
Any questions?

THALY = UDA

Thanks to the core team at SLAC working on various digital
twin and AIML technologies and infrastructure, and many
other collaborators!



Backups



Distribution Shift is a Major Challenge in Particle Accelerators

Many sources of change over time:

* Deliberate changes in beam configuration (e.g. beam charge)

Energy (MeV)

* Unintended drift in initial conditions (including in unobservable
variables), diurnal temperature/humidity changes, etc

* Time-dependent action of feedback systems

175 Measured
Predicted (Ensemble Mean)

L L L B g E -

< unseen region
0 20000 40000 60000
Sample Number (increasing time)

80000 100000

Example: beam size prediction and uncertainty estimates under drift from a neural network
Uncertainty estimate from neural network ensemble does not cover prediction error, but does give a quadlitative metric for uncertainty

Reliable uncertainty estimates and model adaptation methods are key for putting online models to use operationally

Need fast ways of obtaining characterization data from accelerator



Summary/Conclusions

Particle accelerators stand to benefit substantially from
the development and deployment of AIML for modeling
and control
* Faster optimization, new capabilities in beam
customization, human-Al interaction
* High impact for science that is supported by
particle accelerators (and translations to
industry/medicine)

Now scaling up small-scale demos to tackle larger
problems, making algorithms more robust, developing
deployment infrastructure, and bringing into routine
operation

Many interesting problems to tackle, and we
welcome collaborations!

Accelerators are also interesting platforms for
AIML research!
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Opportunities for AIML Accelerator Research in
Accelerators
(mix of needs from science side + compelling areas in AIML)

Pushing to higher-dimensional algorithms (more comprehensive,
precise tuning); incorporation of multiple, multi-modal output beam
targets

Sample-efficient adaptation across setups and over time needed
(different charges, beam phase space, multi-bunch)

Enabling fundamentally new capabilities in beam physics / photon
science

*  FACET-ll “extreme beams” = highly sensitive

*  Precise dynamic control over beam

Comprehensive online system modeling + ML-based optimization
*  Physics sims + ML surrogates being deployed on local HPC connected
to control system (digital twins)

Al and human feedback = human-Al interaction in the
control room is a current area of study

Transfer learning between accelerators
- Similar layouts, component design, beam diagnostics, user needs (e.g.
scan two bunches)

gun
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Broad Research Program at SLAC in AI/ML for Accelerators

(1) Developing new approaches for accelerator optimization/characterization and faster higher-fidelity system modeling, (2) developing
portable software tools to support end-to-end Al/ML workflows, (3) helping integrating these into regular use

Online prediction with physics sims Efficient, safe optimization algorithms Anomaly detection
and fast/accurate ML system models

e e by e tees

601 ) — xms ™
| yms -
I | geomean LCLS Kiystron Anomaly GUI

ground truth

_ validity probability

Regi k Regi t ok
egion ol egion not ol T T 5 =z 5 x >

Output constraints learned on-the-fly

Adhere to constraints and balance multiple targets Challenging problems: e.g. sextupole tuning

ML-enhanced diagnostics

Rapid analysis/virtual diagnostics

Adaptation of models and identification of sources of Combining physics and ML for better performance

deviation between simulations and as-built machine Hysteresis-aware optimization Differentiable simulations + ML for 6D

14 phase space reconstruction
—— Gy NN — OoxNN BO on sys. with  Hybrid BO on Measured Predicted

Shot-to-shot predictions at beam rate
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Many solutions put into reusable open-source software (e.g. Xopt/Badger) demoed at many facilities Time [fs]

C.Emma, et a. — PRAB 21, 112802(2018)

AI/ML enables fundamentally new capabilities across a broad range of applications = highly promising from initial demos.


https://github.com/ChristopherMayes/Xopt

Uncertainty Quantification / Robust Modeling
Current approaches

*  Ensembles

s *  Gaussian Processes

Essential for decision making under uncertainty (e.g. safe opt., intelligent sampling, virtual diagnostics)
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Motivation / Need for AIML for Particle Accelerators

Two major categories of need for AI/ML in accelerators:

L]
characterization for experiments

New fundamental beam dynamics capabilities: unprecedented beam parameters, finely-detailed customization and

Facility operations: efficiency of tuning and quality of beam delivery = increase science output, reduce time-to-discovery

\

Accelerator and Beam Physics Grand
Challenges

Intensity - “How do we increase beam intensity by orders of magnitude?”

Quality - “How do we increase the beam phase space density by orders of
magnitude?”

Control - “How do we measure and control the beam distribution down to
the individual particle level?”

"

Prediction - “How do we develop predictive ‘virtual particle accelerators’

Al/ML features prominently in the ABP Roadmap to address these
challenges: https://science.osti.gov/hep/-

7

/media/hep/pdf/2022/ABP Roadmap 2023 final.pdf

Operational/Facility Challenges

Increasingly complex facilities, challenging setups, tighter tolerances
on beam for experiments
(e.g. exotic FEL setups, PWFA)

Need for on-demand dynamic control during experiments
(e.g. scanning beams in XPCS, compensation for drift)

Currently rely on extensive hand-tuning
(e.g. 400 hours peryear at LCLS = 10 experiments, $12M)

Limited diagnostics, high dimensional parameter spaces, few accurate
models > challenge to understand machine, do data analysis, do experiment
planning

Mix of operational needs for tuning/control: stable delivery, fast switching
between setups, commissioning new capabilities

New approaches for beam prediction, measurement, and control are needed to meet the demands for current and

future accelerator applications and scientific user facilities.



https://science.osti.gov/hep/-/media/hep/pdf/2022/ABP_Roadmap_2023_final.pdf
https://science.osti.gov/hep/-/media/hep/pdf/2022/ABP_Roadmap_2023_final.pdf

Machine Learning Based Accelerator Control

2, Operator inputs
[ ]
----- ]
/N | : A
in i ; Physics : -
Competing Constraints 1 y 1 HPC physics simulation
objectives 1 knowledge :

Accelerator control ;_' ______________

S S B > - | EooTTTzooooooiIs o =
' ;% = algorithm - L. (O
= = H * | o

External Repeatability Limited, noisy beam measurements Measurement
conditions errors Control parameters transverse profile monitors, BPMs, ICTs,
quadrupole scans, TDCs database

magnet currents, RF parameters,
laser settings

Operational complexities

s 11—1-|-

= -.-‘ || I\

Goal: specific beam
characteristics at the target

Accelerated beam




Why Is This So Difficult?

"

Information compression

Camera

—_— _H
Screen

6D distribution / 2D image

—{< x >0}

ID projection(s) Scalar values

Often required by analysis constraints (analytical
tractability, optimization simplicity, etc.)

Costs of detailed beam representations

NANAVAIAN

k

Y

NAVAVA

Histogramming scales poorly with number of
dimensions, Np;,,; « n?

Reasonable resolution,n = 100
For a 6D distribution, N;,;,, = 1012!
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Modular, Open-Source @C@t Xoptston()
Software Development NS

Generator Evaluator

H - VOCS +  Generates sample = Evaluates
Community development of re-usable, S Deties b - ==
H * objectives and
reliable, flexible software tools for oheiraints
AI/ML workflows has been essential to
Retrieve result(s), handle errors, add data to generator, store results etc.
maximize return on investment and ensure
transferability between systems L L, i
variables? opti?nirz\itlal samples: 5
x1: [0, 3.14159] - P 2
1 . i 2: [0, 3.14159] n_steps: 25
Modularity has been key: separating L R Quastatar gotions:
constraints: batch_size: 1
cl: [GREATER_THAN, 0] #sigma:plle-01,70-01,
use_gpu: False

different parts of the workflow + using
c2: ['LESS_THAN', 0.5]
shared standards

standard

data
Simulation ﬁ“ﬁ;‘lﬁ format

Different software for different tasks: / Optimizer

Optimization algorithm driver (e.g. Xopt)
Data Set

Visual control room interface (e.g. Badger)

Simulation drivers (e.g. LUME) Impact
ASTRA gen_l.json X
Standards model descriptions, data formats, GPT v root: . . .
_ P Bmad Y i Online Impact-T simulation and
and software interfaces (e.g. openPMD) Genesis it ot . . . .
SRW (- live display; trivial to get running
Online model deployment (LUME-services) > error: [] 1241 itens on FACET-II using same software
» inputs: [] 1241 items o o
» outputs: [] 1241 itens tools as the LCLS injector

More details at https://www.lume.science/

Modular open-source software has been essential for our work.



https://www.lume.science/
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