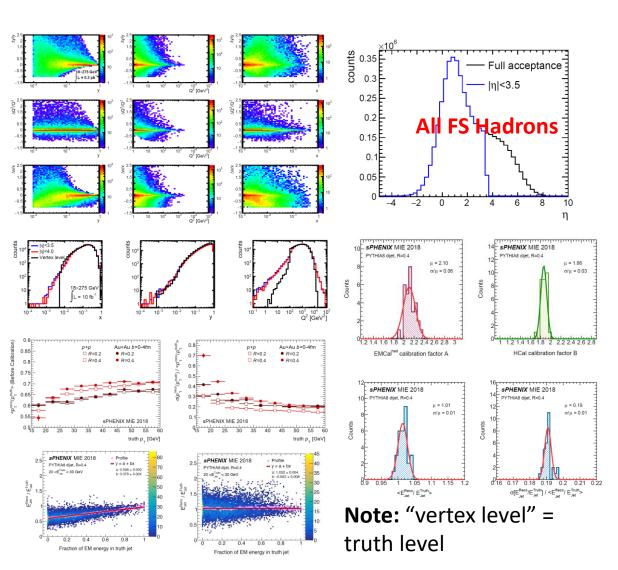


ePIC BHCal Meeting | Possible TDR Plots (1/2)


- Single Particle: do we meet YR requirements?
 - Plots: reconstructed particle energy; resolution + linearity
 - $\rightarrow \pi^{\pm}, n^{0} (p^{+}, k_{L}^{0}?)$
 - > Calibrated, uncalibrated
 - ☞ BHCal + BIC, HCal only
 - Single tile vs. multi-tile? (1, 2, 3, 4, 5 tiles?)
- Single Few Particles: do we help with μ^{\pm} ID?
 - **Plots:** μ^{\pm} energy; reconstruction efficiency; non- μ^{\pm} rejection factors
 - ∽ Andrew Hurley at UMass Amherst has started looking at μ^{\pm} ID in the Barrel
- Right: reference plots from ECCE proposal (upper left) and sPHENIX Test Beam Paper (all others)

ePIC BHCal Meeting | Possible TDR Plots (2/2)

- **Event Reconstruction 1:** do we help with JB?
 - **Plots:** true vs. reco. x_{JB} , y_{JB} , Q_{JB}^2
 - > w/ vs. w/o BHCal?
- **Event Reconstruction 2:** do we help with CC DIS tagging?
 - **Plots:** true vs. reco. E_T^{miss}
 - > w/ vs. w/o BHCal?
 - > NC vs. CC DIS?
- Jet Reconstruction: do we improve the JES/JER?
 - **Plots:** JES/JER
 - > w/ vs. w/o BHCal?
 - > Calibrated vs. uncalibrated?
- Right: reference plots from EIC YR (upper 3) and sPHENIX TDR (all others)

ePIC BHCal Meeting | Thinking Through Plots (1/2)

- Note: some ideas might be better suited for the physics paper rather than the TDR
 - Also, several plots have synergy with other DSCs or PWGs
 - Red = plots critical for TDR, blue = maybe for physics paper
- Single particle: energy spectra (uncalibrated vs. calibrated), and linearity/resolution
 - Machinery in place
 - > Could stand a couple improvements...
 - e.g. setting up macros to run on campaign output rather than as a plugin
 - ML part of calibration needs tuning (esp. for neutrons)

- Single particle: (cont.)
 - Varying no. of tiles challenging:
 - a) Need to rerun ElCrecon for each combination of tile
 - b) Then would run calibration/plotting macros on output from each
- Muons: reconstruction efficiency
 - We should reach out to Andrew Hurley:
 - He's carried out fairly extensive studies of muon ID in the barrel

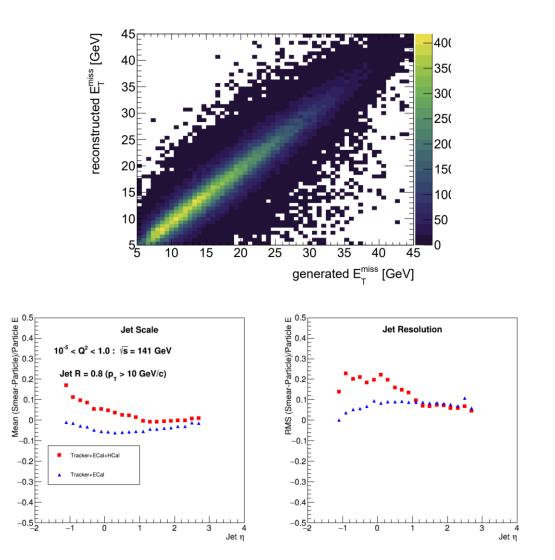
ePIC BHCal Meeting | Thinking Through Plots (2/2)

Jet reconstruction: JES/JER

- Needs quite a bit of development, though
 - Won't be able to use campaign output (HCal not used in jets yet)
 - And we'll need EMCal-HCal calibration factors...
 - Could extend ML study: train on jets rather than clusters...
 - Good to have non-ML option available as well (e.g. ch. 8 of sPHENIX TDR)
- Possible intermediate plots:
 - 1) Jet energy vs. eta
 - 2) Fraction of EM vs. hadronic energy
 - Functionality is available to do basic track-matching
 - 3) Calibration factors

• Jet reconstruction: (cont.)

- 4) EM energy fraction vs. jet energy
- 5) And finally, JES/JER
- Additional thoughts:
 - I think the relevant scale to calibrate against would Q²...
 - Also would be good to explore asymmetric jet algorithm (e.g. Centauro)
- Event reconstruction: JB variables, E_T^{miss}
 - Algorithmically, very easy to calculate (sum over all hadron energies)
 - > But need to avoid double-counting...
 - So need PF (or calibration factors?)



Backup | JB Variables & More Reference Plots

 Jacquet-Blondel (IB) Kinematic Variables: i.e. reconstructed event kinematics using only the hadronic final state

$$- y_{JB} = \frac{\sum_{h} (E_{h} - p_{z,h})}{E_{beam}^{e}}$$
$$- Q_{JB}^{2} = \frac{(\sum_{h} p_{x,h})^{2} + (\sum_{h} p_{y,h})^{2}}{1 - y_{JB}} = \frac{(E_{T}^{miss})^{2}}{1 - y_{JB}}$$
$$- x_{JB} = \frac{Q_{JB}^{2}}{sy_{JB}}$$

- **Upper Right:** reference plot for generated vs. reconstructed E_T^{miss} (from <u>arXiv:2006.1520</u>)
- Lower Right: reference plot for JES/JER with vs. without HCal's (from EIC YR)

