Charming physics at Belle and Belle II

Jake Bennett University of Mississippi BNL physics seminar - August 15, 2024

- Teams led by Burt Richter and Sam Ting _ discovered the J/ ψ state in November of 1974
- Even 50 years later, charm continues to produce _ surprises and interesting avenues for exploration

e 🍋

PRL.33.1404 (1974)

- Teams led by Burt Richter and Sam Ting discovered the J/ ψ state in November of 1974
- Even 50 years later, charm continues to produce surprises and interesting avenues for exploration
 - don't fit the naive quark model of $c\bar{c}$ states

3

- Teams led by Burt Richter and Sam Ting discovered the J/ ψ state in November of 1974
- Even 50 years later, charm continues to produce surprises and interesting avenues for exploration
 - Spectroscopy: many discoveries of particles that don't fit the naive quark model of *cc* states
 - Observation of neutral *D* meson mixing (manifestation of flavor-changing neutral currents resulting from difference in mass eigenstates of meson-antimeson system)

4

- Teams led by Burt Richter and Sam Ting discovered the J/ ψ state in November of 1974
- Even 50 years later, charm continues to produce surprises and interesting avenues for exploration
 - Spectroscopy: many discoveries of particles that don't fit the naive quark model of *cc* states
 - Observation of neutral *D* meson mixing (manifestation of flavor-changing neutral currents resulting from difference in mass eigenstates of meson-antimeson system)
 - Observation of CP violation in charm: consistent, but at the upper end of theoretical predictions for charm CPV
- Still lots to learn!

The hunt for New Physics Unique discovery potential at Belle II

- Mapping and understanding BSM physics requires a range of experiments
 - Energy frontier experiments (including at the LHC) seek to directly produce new particles
 - Intensity frontier experiments (like Belle II) seek to make precise measurements of rare or suppressed processes and study deviations from SM predictions
 - Absence of BSM discoveries at the LHC suggest that the first signs of NP may be seen in high-precision measurements of suppressed processes
 - e.g. new weak (CP-violating) phases in the quark sector

Electroweak penguin

physics-with-electroweak-penguins

The hunt for New Physics Historical contributions by "B factories"

Also a charm factory!

- B factories, Belle @ KEKB and BaBar @ PEPII, played crucial roles in advancing knowledge
 - Large samples of B mesons, charm, tau, and low-multiplicity events
 - Discovery of CPV in the B system (2008 Nobel Prize)
 - Published almost 1200 papers, still publishing more than 10 years after shutdown
- Belle II @ SuperKEKB represent significant improvements
- Expected to record 50 ab⁻¹, two orders of magnitude more than BaBar and 50 times that of Belle

Mt. Tsukuba (877m)

6- 6 B

KEK Tsukuba Campus

SuperKEKB High-luminosity Super B factory

4 GeV e^+

New positron damping ring

7 GeV e-

Animation © KEK

~1 km

- Asymmetric electron-positron collider at $\Upsilon(4S)$
 - Target instantaneous luminosity:
 - $\mathscr{L} = 6 \times 10^{35} \text{ cm}^{-2} \text{s}^{-1} (30 \text{x KEKB})$
 - Max instantaneous luminosity:
 - $\mathscr{L} = 4.7 \times 10^{34} \text{ cm}^{-2} \text{s}^{-1}$ (world record!)

- - Nano-beam scheme
 - Increase beam current, squeeze beams at IP, reduced beam energy asymmetry
 - Target beam height: 50 nm; current value: 300 nm

 $c\bar{c}, s\bar{s}, d\bar{d}, u\bar{u}, \tau^+\tau^- \leftarrow e^+e^- \rightarrow \Upsilon(nS) \rightarrow B^{(*)}\bar{B}^{(*)}$

9

SuperKEKB High-luminosity Super B factory

4 GeV e^+

New positron damping ring

7 GeV e-

Animation © KEK

~1 km

New final focus

- Target instantaneous luminosity:

$$\mathscr{L} = 6 \times 10^{35} \text{ cm}^{-2} \text{s}^{-1} (30 \text{x KEKB})$$

- Max instantaneous luminosity:

 $\mathscr{L} = 4.7 \times 10^{34} \text{ cm}^{-2} \text{s}^{-1}$ (world record!)

Updated on 2024/07/01 09:43 JST

 $c\bar{c}, s\bar{s}, d\bar{d}, u\bar{u}, \tau^+\tau^- \leftarrow e^+e^- \rightarrow \Upsilon(nS) \rightarrow B^{(*)}\bar{B}^{(*)}$

10

- Multipurpose detector designed to reconstruct all visible particles
- Excellent vertexing silicon pixels improve track impact parameter and vertex resolution by about a factor of two over Belle/BaBar
- High-efficiency detection of neutrals ($\gamma, \pi^0, \eta, \eta', \ldots$)
- High trigger efficiency, including for low multiplicity events
- Reconstruction performance at least as good as Belle & BaBar

Beryllium beam pipe: 2 cm diameter

Vertex detector:	
2 layers DEPFET +	4 DSSD

Central Drift Chamber: He(50%):C₂H₆(50%), Small cells, long lever arm, fast electronics

K_L and muon detector:

Resistive Plate Counter (barrel outer layers) Scintillator + WLSF + MPPC (end-caps, inner 2 barrel)

Particle Identification:

Time-of-Propagation counter Prox. Focusing Aerogel RICH

positron (4 GeV)

Readout (TRG, DAQ):

Max. 30kHz L1 trigger ~100% efficient for hadronic evts 1MB (PXD) + 100kB per evt - over 30GB/sec to record

Offline computing:

Distributed over the world via the GRID

 $c\bar{c}, s\bar{s}, d\bar{d}, u\bar{u}, \tau^+\tau^- \leftarrow e^+e^- \rightarrow \Upsilon(nS) \rightarrow B^{(*)}\bar{B}^{(*)}$

Offline computing Distributed computing via "the grid"

- Users interact with data via grid-based analysis tools
 - Significant contributions from BNL and Ole Miss

Ilysis tools Ie Miss

12

A canonical **BB** Event

A.

Precise charm lifetime measurements Leveraging the excellent detector performance

- Belle II can make precision, absolute lifetime measurements
 - Large samples of exclusive charm decays without lifetime-biasing triggers and selections
 - Precise calibration of final state particle momenta
 - Excellent vertex detector alignment
 - Very good vertex resolution, small beam size
 - World-leading measurements for $D^0,\,D^+,\,D^+_s,\,\Lambda^+_c$, confirmation of Ω^0_c

The Belle II Physics Program Asnapshot

- Goal: uncover new physics beyond the SM
- Will contribute to NP searches in many ways
 - Improved precision on SM physics, CPV
 - LFV, LFU, EDM
 - Unique searches in Dark Sector
- ... with many analysis types
 - time-dependent searches
 - missing energy and missing mass
 - Dalitz plot (multi-body) studies
- Some of which are unique to Belle II
 - e.g. inclusive decays and absolute branching fraction measurements that may be impractical at hadron machines

15

Charm physics at a (super) B factory a flavor of the possible avenues of exploration

- Two possible production mechanisms
 - One or more charmed hadrons produced in B meson decays
 - Two charmed hadrons produced from continuum, along with fragmentation particles

e

$$e^+e^- \to c\bar{c} \to D_{\rm tag} X_{\rm frag} D_{\rm sig}$$

- Typically only reconstruct the signal channel
- Also provides access to charmed baryons
- No entanglement between two charmed hadrons, inaccessible strong phases

- Exploit charmed flavor tagging: using $D^{*+}
ightarrow D^0 \pi^+$ or with information from rest-of-event* - High precision SM (e.g. lifetimes), branching ratios, searches for rare or forbidden decays - Can also use B decays or reconstruct fragmentation system to make absolute measurements

16

Searching for New Physics in charm decays Three paths for discovery

- Processes allowed in the Standard Model at tree level
 - SM rates and uncertainties are known
 - e.g. CKM triangle relations
- Processes suppressed in the Standard Model at tree level
 - New physics may contribute at a detectible level beyond the SM prediction
 - e.g. penguin decays, D-mixing, etc.
- Processes forbidden in the Standard Model to all orders
 - Any evidence may indicate new physics
 - Sometimes complicated by SM backgrounds

el at tree level

odel to all orders cs grounds

CP violation and the CKM matrix Kobayashi and Maskawa predict three generations of quarks

- Three mixing angles and one CP violating phase
- Unitarity condition may be represented as triangles, e.g.

$$V_{ud}V_{ub}^* + V_{cd}V_{cb}^* + V_{td}V_{tb}^* = 0$$

Interc

M. Kobayashi T. Maskawa

action eigenstates

$$\begin{array}{c}
\downarrow \\
\begin{pmatrix}
d_W \\
s_W \\
b_W
\end{pmatrix} = \begin{pmatrix}
V_{ud} & V_{us} & V_{ub} \\
V_{cd} & V_{cs} & V_{cb} \\
V_{td} & V_{ts} & V_{tb}
\end{pmatrix}
\begin{pmatrix}
d_m \\
s_m \\
b_m
\end{pmatrix}$$

$$V_{CKM} = \begin{pmatrix}
1 - \lambda^2/2 & \lambda & A\lambda^3(\rho - i\eta) \\
-\lambda & 1 - \lambda^2/2 & A\lambda^2 \\
A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1
\end{pmatrix} + \mathcal{O}(\lambda^4)$$
1 CPV phase

CP violation in charm Unitarity triangle involving charm quarks is "squashed"

- CPV in the Standard Model originates from the complex phase of the CKM matrix
 - Unitarity conditions visualized as triangles
 - Charm CPV difficult to predict \rightarrow strong role for experiment
- weak strong $\Delta A_{CP} = A_{CP}(D^0 \to K^+K^-) - A_{CP}^{wgt}(D^0 \to \pi^+\pi^-) = (-0.154 \pm 0.029)\% \quad \text{where } A_{CP}^f = \frac{|A_f|^2 - |\bar{A}_{\bar{f}}|^2}{|A_f|^2 + |\bar{A}_{\bar{f}}|^2} \propto \frac{\sin(\phi)\sin(\delta)}{(\phi)}$ • Observed value consistent with OMA and - Direct CPV in charm established in 2019 (PRL.122.211803) • Observed value consistent with SM, at the upper end of the expectation Mixing-induced asymmetries cancel in the limit that SU(3) is conserved

- Fundamental importance to continue CPV searches in charm • Need confirmation from other experiments (preferably asymmetries, not differences) • Increase number and precision of measurements and <u>observables</u>

$$\frac{V_{ub}^* V_{cd}}{V_{us}^* V_{cs}} \propto \mathcal{O}(\lambda^4)$$

CPV in T-odd observables Another handle to search for CP violation

- Need four or more final state particles, e.g. $D^+ \rightarrow K^+ K_S^0 h^+ h^-$
- Determine triple products $C_T \equiv \vec{p}_{K^+} \cdot (\vec{p}_{\pi^+} \times \vec{p}_h)$
- Construct asymmetries for particles and antiparticles

$$\begin{split} A_T &= \frac{\Gamma_+(C_T > 0) - \Gamma_+(C_T < 0)}{\Gamma_+(C_T > 0) + \Gamma_+(C_T < 0)} \\ \bar{A}_T &= \frac{\Gamma_-(\bar{C}_T > 0) - \Gamma_-(\bar{C}_T < 0)}{\Gamma_-(\bar{C}_T > 0) + \Gamma_-(\bar{C}_T < 0)} \\ \hline \vec{p}_4 \end{split}$$

Remove effects from final state interactions with difference

$$a_{CP}^{\mathrm{T-odd}} = \frac{1}{2}(A_T - \bar{A}_T)$$

strong weak phase phase

- Assuming CPT, T-odd observables are also sensitive to CP violation: $a_{CP}^{T-odd} \propto \sin(\phi)\cos(\delta)$

 $M \rightarrow P_1 P_2 P_3 P_4$ in mother M rest frame

T-odd asymmetry in $D^+_{(s)} \to K^+ K^0_S h^+ h^-$ Most precise measurements

- Suppress backgrounds, taking advantage of precise D decay length
- Separate candidates by C_T/C_T and parameterize signal yields

$$N_{1} = N(D_{(s)}^{+}) \frac{1 + A_{T}}{2} \qquad N_{3} = N(D_{(s)}^{-}) \frac{1 + A_{T} - 2 \cdot a_{C}^{T}}{2}$$
$$N_{2} = N(D_{(s)}^{+}) \frac{1 - A_{T}}{2} \qquad N_{3} = N(D_{(s)}^{-}) \frac{1 - A_{T} - 2 \cdot a_{C}^{T}}{2}$$

- Simultaneous fit to extract observables

CF
$$a_{CP}^{\text{T-odd}}(D^+ \to K^+ K_S^0 \pi^+ \pi^-) = (0.34 \pm 0.87)$$

CF $a_{CP}^{\text{T-odd}}(D_s^+ \to K^+ K_S^0 \pi^+ \pi^-) = (-0.46 \pm 0.63)$
SCS $a_{CP}^{\text{T-odd}}(D^+ \to K^+ K^- K_S^0 \pi^+) = (-3.34 \pm 2.66)$

PRD.108.L111102 (2023) 800 Events / 1 MeV/c² MeV/c² C₇<0 C₇>0 600 400 '-odd Events 1.86 1.88 1.86 1.9 1.84 1.88 '-odd Pull محيوا والمراجع والمراجع والمراجع والمراجع والمراجع Pull $\overline{M(K^+K_{c}^0\pi^+\pi^-)}$ (GeV/c²) $M(K^{+}K^{0}_{S}\pi^{+}\pi^{-})$ (GeV/c²) 800 Events / 1 MeV/c² MeV/c² –<u></u>,<0 _<u>−</u>C₊>0 400 $\pm 0.32)\%$ Events $3 \pm 0.38)\%$ 1.86 1.88 1.86 1.84 1.84 1.88 1.9 والافرو بالهير التنابي بيأتين والتحيا فتخلى Pull Pull $6 \pm 0.35)\%$ -5^{-1} M(K⁻K⁰_s $\pi^+\pi^-$) (GeV/c²)

- Bonus! First measurement of SCS decay $D_s^+ \to K^+ K^- K_S^0 \pi^+$: B = (1.29 ± 0.14 ± 0.04 ± 0.11) × 10⁻⁴

T-odd asymmetry in $D^+_{(s)} \to Kh\pi^+\pi^0$ First measurements

- No evidence of (global) CPV
 - Precision <1% (statistical) for most modes with systematic uncertainty O(1%)
- Also check in regions of phase space corresponding to dominant resonances (with different strong phases)
 - Vector resonances: $\phi, \rho^{+,0}, \bar{K}^{*0}, K^{*+}$
 - No evidence for local CPV

T-odd asymmetry in $D^+_{(s)} \to K^0_S K^-$ Among world's most precise measurements

- Mass resolution and background suppression better at Belle II
 - Improved detector design/performance
 - Additional pixel vertex detector
- No evidence of CPV

Belle I+II combined

$$D^+$$
: $a_{CP} = (-0.23 \pm 0.45 (\text{stat}) \pm 0.13)$

 D_s^+ : $a_{CP} = (-0.02 \pm 0.24(\text{stat}) \pm 0.08(\text{syst}))\%$

- Also measure asymmetries in other kinematic observables
 - Quadrupole products, helicity angle distributions
 - First measurements, no CPV
- Can also check in subregions of phase space
 - Largest asymmetry in $D_s^+ \to K^{*0} \rho^+: a_{CP} = (6.2 \pm 3.0 \pm 0.4) \%$

$$\pi^+\pi^-$$

5(syst))%

A typical beauty event Quantum correlation allows identification of "signal B" flavor based on "tag B"

Charm is very different No quantum correlation for charmed hadrons due to "fragmentation particles"

Charm flavor tagger (CFT) Novel method to identify production flavor of neutral charmed mesons

0.0

1.82

1.84

1.86

 $M(K^{-}\pi^{+})$ [GeV/ c^{2}]

1.88

- independent of decay mode
- Basic principles can be used at other experiments

Search for neutral $D \rightarrow p\ell$ Forbidden in the Standard Model

- Observed matter-antimatter asymmetry requires Baryon Number Violation (BNV)

• Nucleon BNV allowed in some BSM theories with

 $\Delta(B-L)=0$

(B = baryon number, L = lepton number)

- Interest also for meson decays (allowed in e.g. GUT, leptoquark models)
- Search for BNV in $D
 ightarrow p \ell$, in which B and L are separated violated with $\Delta (B-L)=0$
 - Separately investigate D^0 and \bar{D}^0 with $\mathscr{\ell}=e,\mu$
 - Reference channel: $D^0 \to K^- \pi^+$
- No signal observed: set upper limits of $(5-8) \times 10^{-7}$ at 90% CL
 - Most stringent measurements for \boldsymbol{e} channels
 - First measurements for μ channels

Search for $D^0 \rightarrow hh'e^+e^-$ Suppressed in the SM

- SM long-distance contributions dominate near resonances
- BSM contributions may be comparable far from resonances
- Search for signal in $q^2 = m^2(e^+e^-)$ near resonances (BR measurement) and far from resonances (sensitive to NP)

 $D^0 \rightarrow K\pi\pi\pi$ as reference

- Flavor Changing Neutral Current $c \rightarrow u\ell^+\ell^-$ suppressed in SM; probe for new physics

Search for $D^0 \rightarrow hh'e^+e^-$ Suppressed in the SM

- Measured BR for $D^0 \to K\pi e^+ e^-$ in the ρ/ω region $(39.6 \pm 4.5 \pm 2.9) \times 10^{-7}$
 - Compatible with BaBar $(40 \pm 5 \pm 2 \pm 1) \times 10^{-7}$ and SM expectations
- No signal in other regions and channels
 - Upper limits set at $(2 8) \times 10^{-7}$; most stringent to date

• Significantly improved limits with respect to BESIII and BaBar (but at different q^2 regions)

First search for $\Xi_c^0 \to \Xi^0 \ell^+ \ell^-$ Mesons get all the attention...

- No neutrinoless, semileptonic FCNC decays of charmed baryons yet observed
 - Hamiltonian helicity structure through W-exchange diagrams makes theory more complicated than for mesons
 - Any observed signal would allow LFU tests with $\ell = e, \mu$
- No signal observed
 - Upper limits set at 9.9×10^{-5} (*e* channel) and 6.5×10^{-5} (μ channel)
 - Compatible with SM: 2.35×10^{-6} (*e* channel) and 2.25×10^{-6} (μ channel)

PRD.109.052003 (2024) 50 - Data **Total Fit** 40 MeV/c² Background 30 Events/2 20 1.32 .28 1.3 1.34 $M(\Lambda \pi^0)$ (GeV/c²) Data — Total Fit

Study of $\Xi_c^0 \to \Xi^0 h^0$ Combined Belle and Belle II datasets

- Theoretical approaches differ on how to deal with non-factorizable amplitudes from W-exchange and internal W-emission
 - Measurement of BRs will help clarify theoretical picture

- First measurements for all three BRs
 - Rule out some theoretical models, favoring those based on $SU(3)_F$ -breaking

Study of $\Xi_c^0 \to \Xi^0 h^0$ Combined Belle and Belle II datasets

- Also measure the asymmetry parameter α , related to (can also be compared with theoretical expectations)

 $\alpha(\Xi_c^0 \to \Xi^0 \pi$

Reference Körner, K Ivanov *et* Xu, Kama Cheng, Tse Żenczykow Zou et al. Sharma, V Cheng, Tse Geng et al Geng et al Zhao et al Huang et Hsiao et a Hsiao et a Zhong *et* Zhong *et* Xing et al. Geng et al Zhong *et* Zhong et

$$\frac{dN}{d\cos\theta_{\Xi^0}} \propto 1 + \alpha(\Xi_c^0 \to \Xi^0 h^0) \alpha(\Xi^0 \to \Lambda \pi^0) \approx \alpha(\Xi^0 \to \Lambda \pi^0) = -0.349 \pm 1 \text{ to P-violation}$$

$$(\tau^0) = -0.90 \pm 0.15(\text{stat}) \pm 0.23(\text{syst})$$

	Model	$\mathcal{B}(\Xi^0_c \to \Xi^0 \pi^0)$	$\mathcal{B}(\Xi^0_c o \Xi^0 \eta)$	$\mathcal{B}(\Xi^0_c o \Xi^0 \eta')$	$\alpha(\Xi_c^0\to\Xi^0\pi^0)$
rämer [5]	Quark	0.5	3.2	11.6	0.92
al. [6]	Quark	0.5	3.7	4.1	0.94
al [7]	Pole	7.7	-	-	0.92
eng [8]	Pole	3.8	-	-	-0.78
vski [9]	Pole	6.9	1.0	9.0	0.21
[10]	Pole	18.2	26.7	-	-0.77
/erma [11]	CA	-	-	-	-0.8
eng [8]	CA	17.1	-	-	0.54
<i>l.</i> [12]	${ m SU}(3)_{ m F}$	4.3 ± 0.9	$1.7^{+1.0}_{-1.7}$	$8.6^{+11.0}_{-6.3}$	-
<i>l.</i> [13]	${ m SU}(3)_{ m F}$	7.6 ± 1.0	10.3 ± 2.0	9.1 ± 4.1	$-1.00\substack{+0.07\\-0.00}$
<i>l</i> . [14]	${ m SU}(3)_{ m F}$	4.7 ± 0.9	8.3 ± 2.3	7.2 ± 1.9	-
al. [15]	${ m SU}(3)_{ m F}$	2.56 ± 0.93	-	-	-0.23 ± 0.60
ul. [16]	${ m SU}(3)_{ m F}$	6.0 ± 1.2	$4.2^{+1.6}_{-1.3}$	-	-
ul. [16]	$SU(3)_{\rm F}$ -breaking	3.6 ± 1.2	7.3 ± 3.2	-	-
al. [17]	${ m SU}(3)_{ m F}$	$1.13\substack{+0.59 \\ -0.49}$	1.56 ± 1.92	$0.683^{+3.272}_{-3.268}$	$0.50\substack{+0.37\\-0.35}$
al. [17]	$SU(3)_{F}$ -breaking	$7.74^{+2.52}_{-2.32}$	$2.43^{+2.79}_{-2.90}$	$1.63\substack{+5.09 \\ -5.14}$	$-0.29^{+0.20}_{-0.17}$
. [18]	${ m SU}(3)_{ m F}$	1.30 ± 0.51	-	-	-0.28 ± 0.18
<i>l.</i> [19]	${ m SU}(3)_{ m F}$	7.10 ± 0.41	2.94 ± 0.97	5.66 ± 0.93	-0.49 ± 0.09
al. [20]	$Diagrammatic-SU(3)_F$	7.45 ± 0.64	2.87 ± 0.66	5.31 ± 1.33	-0.51 ± 0.08
al. [20]	Irreducible- $SU(3)_F$	7.72 ± 0.65	2.28 ± 0.53	5.66 ± 1.62	-0.51 ± 0.09

Conclusions

- - CPV searches using T-odd observables in D decays
 - Rare searches for $D \to p\ell$ and $\Xi_c^0 \to \Xi^0 \ell^+ \ell^-$
 - Study of FCNC $D^0 \rightarrow hh'e^+e^-$
 - Charmed baryon measurements in $\Xi_c^0 \to \Xi^0 \ell^+ \ell^-$ and $\Xi_c^0 \to \Xi^0 h^0$
- The physics program of Belle II has outstanding potential for charm physics

 - Significant room to improve basic knowledge of baryons decays
 - Combined results with Belle+Belle II data are arriving!
 - With higher statistics samples, more and higher precision results are on the way

- Belle continues to produce important measurements more than 10 years after data taking

• Upgraded SuperKEKB accelerator, improved Belle II detector, refined analysis techniques

Extra

Charm & CPV probes: two pathways Pathway 1: null hypothesis

- Directly test the standard model
- e.g. via direct CP asymmetry measurements

Annihilation

$A_{CP} \propto |A_1| |A_2| \sin(\phi_1 - \phi_2) \sin(\delta_1 - \delta_2)$

Weak phase difference Strong phase difference

However, gluonic penguin cannot contribute to I = 2 final state ($\pi^+\pi^0$) and electroweak loop has an amplitude of $\mathcal{O}(10^{-6})$, too small to manifest CPV

- Any CPV observed in $D^+
ightarrow \pi^+ \pi^0$ points toward new physics

$$a_{CP}^{dir}(D^+ \to \pi^+ \pi^0) = (2.31 \pm 1.24 \pm 0.2)$$

Charm & CPV probes: two pathways Pathway 2: overconstrain SM predictions

- Compare multiple measurements for one or several related modes -
- e.g. isospin sum rule in $D^0 o \pi^+\pi^-$, $D^0 o \pi^0\pi^0$, and $D^+ o \pi^+\pi^0$

$$R = \frac{A_{CP}(D^0 \to \pi^+ \pi^-)}{1 + \frac{\tau_{D^0}}{\mathcal{B}_{+-}} \left(\frac{\mathcal{B}_{00}}{\tau_{D^0}} + \frac{2}{3} \frac{\mathcal{B}_{+0}}{\tau_{D^+}}\right)} + \frac{A_{CP}(D^0 \to \pi^0 \pi^0)}{1 + \frac{\tau_{D^0}}{\mathcal{B}_{00}} \left(\frac{\mathcal{B}_{+-}}{\tau_{D^0}} + \frac{2}{3} \frac{\mathcal{B}_{+0}}{\tau_{D^+}}\right)} - \frac{A_{CP}(D^+ \to \pi^+ \pi^0)}{1 + \frac{3}{2} \frac{\tau_{D^+}}{\mathcal{B}_{+0}} \left(\frac{\mathcal{B}_{00}}{\tau_{D^0}} + \frac{\mathcal{B}_{+-}}{\tau_{D^0}}\right)}$$

-

A value of R is consistent with zero while $A_{CP}(D^+ \to \pi^+ \pi^0)$ is nonzero, points toward new physics

- Long Shutdown 1 (LS1)
 - Summer 2022 2023
 - Maintenance and upgrade of machine and detector
 - Data taking resumed in early 2024
- Long Shutdown 2 (LS2)
 - To be confirmed
 - Upgrade of the SuperKEKB interaction region to enable $\mathscr{L}_{\text{peak}} = 6 \times 10^{35} \text{ cm}^{-2} \text{s}^{-1}$
- Key challenge to increasing beam lacksquarecurrents and squeezing beam-size at interaction point: beam-beam blowup

What happens beyond 50 ab⁻¹?

•	Belle II	Observable
	- Higher sensitivity to decays with photons and neutrinos (e.g. $B \rightarrow K \nu \bar{\nu}, \ \mu \bar{\nu}$), inclusive decays, time dependent CPV in B_d , τ physics	$\frac{\sin 2\beta/\phi_1}{\gamma/\phi_3}$ $\frac{\alpha/\phi_2}{ V_{eb} / V_{eb} }$
•	LHCb	$S_{CP}(B \to \eta' K_{\rm S}^0)$
	- Higher production rates for ultra rare B, D, & K decays, access to all b-hadron flavors (e.g. Λ_b), high boost for fast B_s oscillations	$A_{CP}(B \to \pi^{0}K_{S}^{0})$ $S_{CP}(B \to K^{*0}\gamma)$ $R(B \to K^{*}\ell^{+}\ell^{-})$ $R(B \to D^{*}\tau\nu)$ $R(B \to D\tau\nu)$ $\mathcal{B}(B \to \tau\nu)$
•	Overlap in key areas to verify discoveries	$\frac{\mathcal{B}(B \to K^* \nu \bar{\nu})}{\mathcal{B}(\tau \to e \gamma) \text{ UL}}$
•	Upgrades	$\mathcal{B}(\tau \to \mu \mu \mu)$ UL
	 Most key channels will be statistically limited (not theory or systematics) 	Table 1: Projected the measurement

JAHEP report to Snowmass: https://arxiv.org/abs/2203.13979

Consideration of further luminosity upgrade and electron polarization capability of SuperKEKB are started for ultimate new physics searches with heavy flavor quarks and leptons including τ lepton g-2 in light of the muon g-2 anomaly

			the second se			
2022	2022	Belle-II	Belle-II	LHCb	Belle-II	LHCb
Belle(II),	LHCb	5 ab^{-1}	50 ab^{-1}	$50 { m ~fb^{-1}}$	250 ab^{-1}	300 fb⁻
BaBar						
0.03	0.04	0.012	0.005	0.011	0.002	0.003
11°	4°	4.7°	1.5°	1°	0.8°	0.35°
4°	_	2°	0.6°	_	0.3°	-
4.5%	6%	2%	1%	2%	< 1%	1%
0.08	_	0.03	0.015	—	0.007	—
0.15	_	0.07	0.04	-	0.018	-
0.32	_	0.11	0.035	-	0.015	-
0.26	0.12	0.09	0.03	0.022	0.01	0.009
0.018	0.026	0.009	0.0045	0.0072	< 0.003	< 0.003
0.034	_	0.016	0.008	-	< 0.003	-
24%	_	9%	4%	_	2%	-
_	—	25%	9%	_	4%	—
42×10^{-9}	_	22×10^{-9}	6.9×10^{-9}	—	$3.1 imes 10^{-9}$	—
21×10^{-9}	46×10^{-9}	$3.6 imes 10^{-9}$	0.36×10^{-9}	1.1×10^{-9}	$0.07 imes 10^{-9}$	5×10^{-5}

ted precision of selected flavour physics measurements at Belle II and LHCb.(The † symbol denotes nt in the $1 < q^2 < 6 \text{ GeV}/c^2 \text{ bin.}$

Some prospects for future measurements Small part of the broad Belle II physics program

- Testing LFV/LFU and understanding their origins
 - Belle II will measure $R(D^{(*)})$ about 3x more precisely than current world averages, probe NP in angular distributions
 - Belle II expects to discover $B^+ \to K^+ \nu \bar{\nu}$ (BF with 10% uncertainty) and study angular distributions in $B \to K^* \ell \bar{\ell}$
- Checking the unitarity of the CKM matrix to high precision
 - Belle II uniquely positioned to understand/resolve long-standing discrepancy between inclusive/exclusive $|V_{cb}|$, $|V_{ub}|$ in experimentally clean e^+e^- environment
 - Belle II can measure all CKM angles with high precision

- - Belle II will measure CP asymmetries for decays proceeding via penguin loop transitions $b \rightarrow s$ and $b \rightarrow d$
 - e.g. unique precision in time-dependent CP asymmetries in $B^0 \rightarrow \eta' K_S^0$, ϕK_S^0
- Probing the existence of dark-sector particles
 - Unique opportunities at Belle II to uncover dark sector particles
- Reducing the uncertainty in the theory \bullet prediction for muon g-2 (see backup)

Identifying new weak (CP-violating) phases in the quark sector

Testing LFV/LFU and understanding their origins

- Universality of the lepton coupling to the W gauge boson is fundamental in the SM
- Semileptonic B decays sensitive to NP
 - Flavor-dependent fermion couplings could violate LFU
 - Most systematic uncertainties, CKM element, and form factors, cancel in ratios
 - Belle II will measure $R(D^{(*)})$ about 3x more precisely than current world averages
 - Can also probe inclusive semi-tauonic B decays (different theoretical uncertainties), angular distributions sensitive to NP
 - Belle II expects to discover $B^+ \to K^+ \nu \bar{\nu}$ (BF measurement with 10% uncertainty) and study angular distributions in $B \rightarrow K^* \ell \ell$
- Belle II will investigate LFV with τ decays in many modes
 - Sensitivity of dozens of modes will be improved by up to two orders of magnitude

contributing both in the box and in the penguin diagrams

Checking the unitarity of the CMK matrix to high precision Belle II can measure all CKM angles with high precision

 $B \to \pi\pi, \rho\rho, \rho\pi$

- Long-standing discrepancy between inclusive/exclusive $|V_{cb}|$, $|V_{\mu b}|$ Could indicate presence of non-SM partial widths Belle II uniquely positioned to understand/resolve discrepancies
- - in experimentally clean e^+e^- environment
- Measured $|V_{\mu s}|$ systematically smaller than CKM unitarity constraints Inclusive τ decays at Belle II provide alternate approach (different systematics than semileptonic kaon decays)

Belle II can measure α/ϕ_2 with a world-leading precision of less than 1°

Bernlochner Ц results (credit recent snld 2021 HFLAV

Identifying new weak (CP-violating) phases in the quark sector High sensitivity to New Physics

- High sensitivities to new weak phases from non-SM processes in CP asymmetries for decays proceeding via penguin loop transitions $b \rightarrow s$ and $b \rightarrow d$
 - Belle II will measure such asymmetries in variety of charged and neutral final states e.g. unique precision in time-dependent CP asymmetries in $B^0 \rightarrow \eta' K_{s}^0$, ϕK_{s}^0

- Belle II will measure time-dependent CPV in $b \rightarrow s\gamma$ that can arise from right-handed currents
- Will also search for CPV in many charm hadron decays, including $D \to \pi^+ \pi^0$ (unambiguous evidence for NP)

Probing the existence of dark-sector particles Belle II already has several world leading results

- Belle II can search for light DM with masses $\mathcal{O}(MeV-GeV)$
 - Interest growing after null direct searches at LHC
 - Theoretical models predict light mediators that couple DM to SM particles
 - Unique opportunities at Belle II to uncover dark sector particles

Reducing the uncertainty in the theory prediction for muon g-2

- Important measurement of US HEP program
- Belle II can reduce the dominant theoretical uncertainty with a more precise \bullet measurement of the $e^+e^- \rightarrow \pi^+\pi^-$ cross section with high statistics data

Understanding the role of QCD in production and binding of hadrons

Exotic QCD states including tetraquarks and QCD molecules can be produced at Belle II in a variety of production mechanisms

10 "exotic" candidates (not explained in conventional quark model), nature of 8 states under investigation, 17 consistent with quark model All measurements provide critical insights for QCD

Ability to reconstruct all neutral and charged FS particles gives Belle II a unique opportunity to search for exotic states

Unique studies in nuclear physics

- Di-hadron spin-momentum correlation measurements at B factories: crucial input on nucleon partonic structure Precision data from Belle II will enable the extension to multidimensional correlations of spin and momenta
 - Important input to design/implementation at future electron-ion collider

Belle II contributions to g-2 puzzle Precise cross section measurements with high statistics data

- Belle II well positioned to constrain HVP in intermediate energy region where lattice/ e^+e^- data disagree
- Current Belle II analysis aims for relative experimental \bullet uncertainty:
 - $\pi^+\pi^-$ channel about 0.5%
 - $\pi^+\pi^-\pi^0$ channel about 2%
 - Competitive with world data
 - Resolve KLOE/BaBar tension
 - Future improvements possible due to much larger dataset, PID
- Additional channels
 - $KK\pi^0\gamma$; $\gamma\gamma^* \to \pi^0$ (HLbL)
- Future opportunities
 - Conserved vector current (CVC): $\tau \to \pi^0 \pi \nu_{\tau} \leftrightarrow e^+ e^- \to \pi \pi$
 - Needs better understanding of isospin breaking effects

Phys. Rev. D101, 014029 (2020)

Measuring CKM parameters Usefulness depends on exp./th. accuracy

Angles
$$\alpha = \phi_{2} = \arg\left(-\frac{V_{td}V_{tb}^{*}}{V_{ud}V_{ub}^{*}}\right)$$

$$B \rightarrow \pi^{+}\pi^{-}, \pi^{+}\pi^{0}, \pi^{0}\pi^{0}$$

$$B \rightarrow \rho^{+}\rho^{-}, \rho^{+}\rho^{0}, \rho^{0}\rho^{0}$$

$$B^{0} \rightarrow \rho\pi$$

$$B^{0} \rightarrow a_{1}(\rho\pi)^{+}\pi^{-}$$

$$\gamma = \phi_{3} = \arg\left(-\frac{V_{ud}V_{ub}^{*}}{V_{cd}V_{cb}^{*}}\right)$$

$$R^{-} \rightarrow D_{CP}^{(*)}K^{(*)-}$$

$$B^{0} \rightarrow D_{CP}K^{*0}$$

$$B^{-} \rightarrow D^{(*)}(K_{S}h^{+}h^{-})K^{(*)-}$$

$$B^{-} \rightarrow D(K_{S}K^{+}\pi^{-})K^{-}$$

$$(0,0)$$

Measuring CKM parameters Usefulness depends on exp./th. accuracy

Angles
$$\alpha = \phi_{2} = \arg\left(-\frac{V_{td}V_{tb}^{*}}{V_{ud}V_{ub}^{*}}\right)$$

$$B \rightarrow \pi^{+}\pi^{-}, \pi^{+}\pi^{0}, \pi^{0}\pi^{0}$$

$$B \rightarrow \rho^{+}\rho^{-}, \rho^{+}\rho^{0}, \rho^{0}\rho^{0}$$

$$B^{0} \rightarrow \rho\pi$$

$$B^{0} \rightarrow a_{1}(\rho\pi)^{+}\pi^{-}$$

$$\gamma = \phi_{3} = \arg\left(-\frac{V_{ud}V_{ub}^{*}}{V_{cd}V_{cb}^{*}}\right)$$

$$R^{-} \rightarrow D_{CP}^{(*)}K^{(*)-}$$

$$B^{0} \rightarrow D_{CP}K^{*0}$$

$$B^{-} \rightarrow D^{(*)}(K_{S}h^{+}h^{-})K^{(*)-}$$

$$B^{-} \rightarrow D(K_{S}K^{+}\pi^{-})K^{-}$$

$$(0,0)$$

*Potential for new physics

Measuring CKM parameters Usefulness depends on exp./th. accuracy

Angles
$$\alpha = \phi_{2} = \arg\left(-\frac{V_{td}V_{tb}^{*}}{V_{ud}V_{ub}^{*}}\right)$$

$$B \rightarrow \pi^{+}\pi^{-}, \pi^{+}\pi^{0}, \pi^{0}\pi^{0}$$

$$B \rightarrow \rho^{+}\rho^{-}, \rho^{+}\rho^{0}, \rho^{0}\rho^{0}$$

$$B^{0} \rightarrow \rho\pi$$

$$B^{0} \rightarrow a_{1}(\rho\pi)^{+}\pi^{-}$$

$$\gamma = \phi_{3} = \arg\left(-\frac{V_{ud}V_{ub}^{*}}{V_{cd}V_{cb}^{*}}\right)$$

$$R^{-} \rightarrow D_{CP}^{(*)}K^{(*)-}$$

$$B^{0} \rightarrow D_{CP}K^{*0}$$

$$B^{-} \rightarrow D^{(*)}(K_{S}h^{+}h^{-})K^{(*)-}$$

$$B^{-} \rightarrow D(K_{S}K^{+}\pi^{-})K^{-}$$

$$(0,0)$$

Possible view with the full Belle II dataset

*Potential for new physics

THE UNIVERSITY of MISSISSIPPI

Little Rock

Ole Miss is the state's flagship (R1) university

Research programs in gravitational physics, physical acoustics, high energy physics

