
Streaming readout development and CODA support for
Jefferson Lab experimental programs

Streaming Readout Workshop – SRO XII
Tokyo, Japan, Hybrid Meeting

Dec 2-4, 2024

David Abbott
FEDAQ Group

Jefferson Lab – Physics Division

Streaming with CODA at JLab

Data Acquisition at Jefferson Lab
• At JLab we have 4 Experimental Halls, all running with different detectors,

and physics focus.

• Experiments are increasingly reliant custom electronics to interface
detectors and digitize signals.
－But older hardware is still relevant and useful (particularly for starving budgets)

• Our goal is to support both the existing Triggered model along with the
Streaming model within one integrated DAQ framework.
－Leverage existing hardware to implement streaming
－Add support for new electronics
－Try to keep it as consistant and user friendly as possible

A B C

D

CODA – CEBAF Online Data Acquisition

• What is CODA? (also see https://coda.jlab.org)
– Software toolkit for implementing data acquisition systems.
– Hardware/Electronics

• Custom boards (e.g. Trigger/Clock, TDCs and ADCs)
• Support for commercial hardware.

– Software includes :
• Interface with electronics (libraries/drivers).
• Readout Front End and format data (ROC)
• Inter-process communication - Control and Data (cMsg)
• Merge data streams (Event Building, Stream Aggregation)
• Give users access to data for analysis and monitoring (ET System)
• Write data to files (EVIO, Event recording)
• Manage and control the data acquisition system (AFECS)

• CODA is modular
• Build a single crate DAQ test bed or a full experimental hall system

http://coda.jlab.org/

The CODA Data Acquisition (software) Toolkit
CP

U

TI EMU
(Event Builder)

EMU
(Event Recorder)

File

FileET

User

AFECS

ROC

ROC

Platform

rcGUI
COOL

Database ROC – Readout Controller
EMU – Event Management Unit
ET – Event Transport (Shared memory)
AFECS – Agent Framework Experiment
 Control System

The ROC is software responsible
for collecting data from front-end
hardware and sending it to the
next stage.

Trigger/Clock

CP
U

VT
P TI

SD

PCIe TI

ROC

VME

VXS
Data transport and all
files are all written in:

CODA EVIO Data Format

Readout Controller (ROC)

VME

OS: Linux
ARCH: Intel, Arm

ROC

Output Thread

Trigger ThreadProcess Thread

to EMU, ET
stdout or File

DMA
Lib

VME
Lib

DMA
PoolControl

cMsg

PCI

User
Libs

User User
FIFO

UserFIFO
ROL2 ROL1

Buffer
Pool

F
I
F
O

Interactive shell (Tcl)
$ <cmd>

Buffer
Pool

DL Lib

RemexBuffer Pool M
od
ul
es

VXS

to optional Trigger Processor

The CODA ROC is a software
application that has multiple
options for the User to
implement custom code or
hardware for their specific
needs.

External Trigger/Clock

The EMU Component

• EMU – Event Management Unit – is a JAVA-
based general processing application for DAQ.
It comes in many flavors:

• DC – Data Concentrator
• PEB – Primary Event Builder
• SEB – Secondary Event Builder
• ER – Event Recorder
• PAG – Primary Aggregator
• SAG – Stream Aggregator

Input/Output Connections:
• Event Transport (ET) system
• EMUSocket protocol - part of the CODA cMsg

library (it allows for multiple connections or
“fat” pipes on high bandwidth networks)

• EVIO data file

EMUSocket

ET

EMUSocket

ET

File

cMsg – CODA Messaging

• cMsg is a publish-subscribe, inter-process
messaging system.

• At the most basic level it is an API for sending
and receiving messages. This API is used to
wrap a variety of communication protocols.

• Supported in C, C++ and Java on Linux and
MacOS.

• All online CODA components use cMsg to
communicate both control information and
create high-speed data links to each other.

• Available sub-domains include:
－cMsg – General publish-subscribe
－rc - Run Control
－rcs - Run Control server
－rcm - Run Control multicast
－emu - EMU data links
－CA - EPICS channel access

Event Transport (ET System)

• The ET system gives programs access to data via
pre-allocated shared memory buffers.

• The system uses a railroad metaphor. Free data
buffers are queued at Grand Central. They are filled
by data producers and tagged to describe the content.

• The buffers “move” around a circular track and at each
Station the tag is checked to see if the buffer should
queue at the station.

Examples:
• An event monitor could set up station, S2, to take 1%

of the events.
• An event filter could set up S3 to take all events.

Discarded events are sent back to GC good ones
move on.

• An event recorder (S4) takes all events and, after the
data is written to a file sends the buffer back to GC.

File

Run Control - AFECS

Many rcGUI processes can communicate with
a single Platform that is defined by a COOL
Database with a Name = env(EXPID).

The Platform is a JAVA-based application
running multiple “agents” that monitor
and control external CODA client
components (ROC, PEB, ER etc.) or
internal processes (scripts).

Multiple run configurations can also be
operated simultaneously.

External commands can be used in User scripts
to communicate directly with the platform.

COOL Database Configuration Editor – “jcedit”

Example: Hall D GlueX
1 Trigger Supervisor
50 Readout Controllers
 4 Data Concentrators
 1 Secondary Event Builder
 1 Event Recorder
 1 File output

The Java program jcedit
allows the User to
graphically create different
DAQ configurations,
defining the components,
data links, data files and
other details.

CODA EVIO File Display - jeviodmp

Built Physics
Triggered Event Block

Built Trigger Bank
(+5 ROC trigger banks)

ROC 0 Data Banks (2)

ROC 2 Data Bank

ROC 7 Data Bank

ROC 5 Data Bank

ROC 3 Data Bank

JLAB Clock, Trigger, Sync (CTS) Distribution System
For large DAQ
systems with many
front-ends (ROCs)

The TI/TD board can be
used as a TS for small
(up to 9) front-ends

MTP Fiber

VXS Standard (VITA 41)

• JLab standardized on this technology for the 12GeV Upgrade
 - Originally used for the L1 trigger data path
• Dual Star – switched serial backplane (along with original VME)
• Up to 20Gb (4 lanes) from each Payload to the 2 Switch slots (A, B)
• Up to 18 Payload slots are available
• Easy distribution of Trigger, Sync and low jitter Clock to all modules in

the crate.

A B

VXS Trigger Processor (VTP)

• Relieve the ROC of all of the “Readout” tasks and implement them in the FPGAs.
• Triggered or Streaming readout from All payload modules in parallel
• This requires the payload modules to have some intelligence/programmability and

serial link capability (e.g. FPGA-based).
• The Software CODA ROC now is primarily responsible only for Configure, Control and

Monitoring the VTP-Based streaming DAQ.

JLAB – VTP Board
Linux OS on the Zync-7030 SoC
(2-core ARM 7L , 1GB DDR3)
10/40Gbps Ethernet option
(runs the CODA ROC)

Xilinx Virtex 7 FPGA
Serial Lanes from both the VXS
backplane and the Front panel

4GB DDR3 RAM

16 total lanes
for external
serial links

16 Payload
Ports

64 total
serial lanes

Four
10Gbps
Ethernet

V7

Z7

FADC

FADC

FADC

FADC

FADC

FADC

FADC

FADC

VXS Crates/Modules - Flexible Streaming Platform

• In addition to supporting all the older VME
electronics, we have developed a number of
custom boards that take advantage of the VXS
backplane.

• Streaming Model tests grew out of the original
purpose of VXS for the trigger data path.

• More immediate needs of experiments, however,
are for Triggered data readout via the VTP as
well – rather than over VME.

250 MHz FADC
16 Chan / 12 bits

JLab workhorse in all
current experiments

 Used in Streaming
testbed (above)

Subsystem Processor
(SSP)

FPGA board
8 QSFP Inputs (32 links)

QSFP->VXS adapter card
Simple direct serial link
access to the VTP for
External custom
electronics
(e.g. MPD module)

DCRB (TDC)
Drift Chamber
Readout Board

CLAS 12
DC Readout
Triggered or
Streaming

JLAB FADC – Streaming and Triggered…

TF1

0 N

ROI

TH

ROI

TH

ROI

TH

ROI

TH

TF2 TF3 TF4

ROI

TH

ROI

TH

ROI

TH

16bit Fine
Time Stamp

Chan 1

Streaming data can be thought of as Triggered mode where the trigger is a fixed pulser and you keep all the
data for a single channel generated between pulses.

A 250 MHz FADC generates a 12 bit sample every 4ns. That’s 3 Gb/s for one channel. A 16 channel module is
48 Gb/s. That is over twice the available VXS bandwidth. But we don’t need ALL the samples.

Chan 16

Readout Time Frame
(65µs)

Within the FPGA we keep only the data around a Region of Interest (ROI) from each channel,
along with a fine time stamp (4ns ticks) in each time frame window (65µs).

Current FADC<->VTP bandwidth allows for 1 hit/32ns if we compute a sum. Keeping all ROI
samples could generate congestion issues that must be handled in firmware. This is currently
being developed.

.

.

.

Note: The JLAB FADC can
simultaneously operate in
“triggered” mode with an
8µs pipeline and 2µs
window.

FADCs - Triggered vs Streaming

External
Trigger
(timestamp)

PL (0-8µs)

PTW (0-2µs)

ROI

TH

0 511 (Sample #)

PL: Programmed Lookback
PTW: Time window

Data we get on a trigger:
 - FADC waveform values for the ROI
 - Threshold Sample # (hit time)
 - Trigger absolute timestamp (48 bits)

Triggered Mode Streaming Mode
Time Frame
 (Frame #
 & timestamp)ROI

TH

0 N (Max Sample #)

1 Frame = N Clocks (up to 16bits, currently 65536 ns)

Data we get for a Frame:
 - Pedestal subtracted sums over an ROI for every hit over threshold
 - Threshold sample # fine time stamp for each hit
 - Frame # and absolute time stamp for the frame

ROI

TH

ROI

TH

ROI

TH

ROI

TH

Fine time stamp (4 ns)

Trigger Bank

Data Banks

Length (words)
Tag DT MROC Data Format

Stream Info Bank

Data Banks

Length (words)
Tag DT SSROC Data Format

Trigger #
timestamp

Frame #
timestamp

• EVIO data are stored as a series of four-
byte integers.

• EVIO data files are written in ”Blocks”
and can be appended.

• Each Block is defined by a Header
followed by “Event Count” payload
banks.

EVIO Data Formats
ROC Triggered Payload ROC Stream Payload

ROC Bank Length

Hardware Accelerated ROC Data transport
• The CODA VTP ROC uses a firmware based “Frame-Builder” for stream data management
• Globally at JLAB CTS “Sync” is used to start and stop all the streams at their source (FADC boards)
• Payload Port FADC boards are currently configured via the VME Based CODA ROC

• Locally, PPs stream hits to a VTP DRAM buffer. The Frame Builders have a frame “fifo”
• A Frame builder will only aggregate hits into a ROC frame if the fifo is not full. Otherwise the frame is dropped.

(This is only relevant for TCP streams.)
• Built ROC frames at the Zync will always get sent (eventually).
• Up to 4 independent network streams can be defined. Each PP maps to a specific output stream.
• Limited Zync resources only provide 2 high performance TCP connections (or 4 UDP streams)

PP 1

PP 16

VXS

VTP

BUF 1

BUF 16

4 x Frame
Builder TCP/UDP

TCP/UDP

UDP

UDP

DRAM Zync

1

2

3

4

Note:
TCP Performance
 ~7.5 Gbps per link without frame drops

UDP performance (8000 MTU)
 >9.5Gbps per link
 ~50% CPU utilization to read a single stream

(These tests were done with both VTP and a
Server connected through a single switch)

4 X 10Gbps ports

Simple Hybrid DAQ System

EMU
(Event Builder)

File

CP
U

TI

EMU
(Stream

 Aggregator)

VT
P

SD

File
FADCs

PC/Server

e-

DISC

Trigger
Two ROCs are defined for
the DAQ System

VME ROC
Runs on the CPU
Reads out Triggered data

VTP ROC
Configures and manages
the stream data

10Gbps

1Gbps

VXS Crate

phototube

scintillator

Lead glass Calorimeter

Event/Frame Building

PAG

PAG

PAG

PAG

SAG

SAG

File

File

Primary Aggregator

Secondary
Aggregator

Data Concentrator

Event Builder

File

File

Triggered DAQ Streaming DAQ

The CODA software toolkit allows
flexible back-end Event Building
or Frame Building from many
data sources.

VTP ROCsCPU ROCs

Some general observations…
• The design of our Clock/Trigger/Sync/Busy distribution system is critical to the flexibility and

functionality of the CODA Hybrid DAQ.
• The VXS platform works for JLAB for the near term, but how do these solutions evolve for future

experiments, in particular the Streaming model.

FEE

FEE

FEE

FEE

FPGA

ROC

Server

Server

SoC

Form factors:
VXS/VTP
PCIe?
Stand Alone?

The critical component to just about any
system is a System on a Chip with enough
resources to support at least a few Front End
electronics serial link protocols and perform
1st stage hardware stream aggregation. And
present the data to Back-end processing in a
standardized way.

ethernet

PCIe

• Managing data “streams” is ideally done in a deterministic way – e.g. FPGAs
• Proprietary communication with the front-end electronics.

－One Bi-directional link (fiber)
－Send: clock, commands, control, config
－Receive: high speed data streams

• System on Chip (SoC) facilitates DAQ/User applications to communicate with
the Front-end.
－Readout, Configuration and Slow Control

“Intelligent” Routing - EJFAT

(FPGA)
2 X 100 Gpbs

Ethernet ports

SRO DAQ generates continuous
timestamped data frames from
all detector systems

Fully aggregated detector time
frames get distributed to
available processing

Future experiments are looking to
implement an SRO model enabling full
offline analysis chains to be ported
into real-time…

With CODA we are considering
implementing the EJFAT Load Balancer
component as a very efficient frame-
builder in place of the software stream
aggregators

New Detectors - New Front End Electronics

MAROC3 ASICs
64 channel
Fast ”trigger” bits
MAPMT/SiPM readout
Optional 8/10/12bit ADC

Artix FPGA Daughter card
with 1Gb Ethernet port

1Gb
Ethernet

Clock/Sync
(RJ45)

Artix 7 FPGA
(firmware TDC)

Petiroc
ASICs

• Used with the new RICH Detector in Hall B and and the DIRC
detector in Hall D

• MAROC capable of streaming “Fast” bits but current readout
is via a trigger.

• Clock and trigger are provided by copper cable fanouts

• Planned use with upcoming ALERT experiment in
Hall B (TOF detector).

• Additional applications in PET readout and image
processing with the JLab Detector Group

• The Petiroc ASIC supported both triggered and
streaming readout.

• ALERT will use it in triggered mode. Clock, Sync and
Trigger will be provided via RJ45 copper fanout.

• PET development is investigating a streaming
option.

HALL B RICH Detector - Readout

MAPMT Sensors (25024 Channels)

138 Readout Boards (Tiles)
(Blue fiber cables)

5 SSP FPGA boards aggregate the
fibers in a single VXS crate

ROC Readout over VME Bus Streaming is possible via the
VTP in the future, using the
SSP as an intermediate
aggregation point.

FELIX Hardware Integration

ASIC/FEE

JLab Trigger/Timing interface

Versal Ultrascale+ FPGA

PCIe

DRAM

DAQ Server

User
Processes

Control/Clock

Data

Ethernet
(to more processing)

De
te

ct
or

FELIX: Front-End Link eXchange
Model 155

Currently FLX155 Engineering article is being tested at
BNL. (See Hao Xu talk at this workshop)

It is also going to be used for the ePIC Detector DAQ for
the new Electron Ion Collider (See Jeff Landgraf talk)

Future plans are to integrate the use of the FELIX
board with CODA streaming firmware and
software to support more detector resident
electronics at JLab.

ASIC/FEE

ASIC/FEE

ASIC/FEE

100Gb Ethernet

Linux OS
CODA ROC
Stream Frame Builder (output via Ethernet and/or PCIe)

Up to 48 links

Summary
• The VXS platform provides a convienent near term solution to support the next

generation of experiments needing higher performance front-end triggered readout
as well as streaming support.

• Transition from the CODA DAQ system’s traditional software-based Readout
Controller (ROC) to a “hybrid” hardware accelerated application has been
successfully implemented.

• There is still work ahead will involve making CODA robust against whatever the
new front-end electronics may require

• The nature of the varied types of experiments and detectors here at JLab
motivates our small electronics and computing support groups to look for both
commercial solutions as well as standardized software and firmware to help
manage all the data acquisition challenges.

Backup Slides

JLab Timing System Components (GTU)

Stream Aggregation – Data formats

RSB Header

Raw Stream
Data for one

Time slice

Length (words)
Tag DT SS

Tag: Payload port ID – Unique just to the FEE/Digitizer Module
 Detector/Channel info
DT: Data Type – User/FEE specified
SS: Stream Status – Raw Bank, Did data get dropped? Clock info,
 Error?

Note: It is important for the ”Front-End” Electronics/Digitizers to be
 integrated with the timing distribution.
 - Data Frames are defined by the system clock
 - Local time stamps are synced with the system
 - Can streams be started and stopped synchronously?

Raw Stream Bank (RSB)
(Payload Port – e.g. FADC)

Aggregate Stream Records

ROC Header Length (words)
Tag DT SS

PP N

PP 1

PP 2

…

TSS

AIS

Tag: ROC ID – Unique to the whole system
 DT: Data Type – Bank of Banks (0x10)
 SS: Stream Status – ROC Stream info – how many
 got created. Which streams included. Error?

AIS – Aggregation Info Segment
(holds information on RSBs that
are attached).

ASB Header Length (words)
Tag DT SS

ROC M

ROC 1

ROC 2

…

A-TSS

A-AIS

For subsequent aggregations the ROC
Records are simply appended and a
new A-TSS and A-AIS are created to
hold Time Stamp/Slice info and total

number of ROCs.

1st Aggregation (ROC) Subsequent Aggregations

TSS – Time Stamp Segment
(holds Frame number and
time stamp for ROC
aggregation point).

SBS GEM Trackers

• Not practical to keep MPD boards in a VME/VXS crate and readout over VME
 MPDs needed to be closer to the GEM detector
 Total data rates generated by GEMs could not be handled by VME bandwidth

• Use a remote serial link interface with the VXS Crate and a VTP (4 MPDs per slot)
 MPD configuration and control as well as high speed data
 Clock and trigger still sent via copper cable fanouts

MPD: Multi-Purpose Digitizer Board

Used to manage and digitize signals from the 128 channel
APV25 ASIC Front-End Electronics boards.

MPD supports both VME readout as well as a front-panel
serial link.

• Typically 1.25Gbps to 10Gbps per lane, bi-directional
• Fiber connected front-ends typically 1 lane (up to 10Gbps per remote front-end module)
• VXS backplane connected front-ends typically 4 lanes (up to 20Gbps per local front-end

module)
• Custom protocols implemented:

－Completely custom when fixed latency low-jitter links needed
－Supports remote front-end register read/write access, event data transport (and optionally trigger data and fixed

latency trigger/sync distribution)
－When fixed latency isn't required we typically use Xilinx Aurora framing procotol (with custom frame formats).

Aurora is a light-weight protocol to establish links (bond and align data) and support streaming and framing data.
• e.g. VTP <-> MPD protocol:

－ 1.25Gbps multi-mode optical, 8b10b encoded. After the deserialization on either end (VTP or MPD) it looks like a
16bit wide bus @ 62.5MHz (1Gbps) for transmit and received.

Serial Protocol (VTP– MPD)

Aurora
Protocol

Aurora
Protocol

Register Access

Event Data
Register Response

Register Access

Event Data
Register Response

Arbiter

VTP MPDFrame Types: Frame Types:

