
The sPHENIX RCDAQ System – Streaming Readout

Martin L. Purschke

1

Long Island, NY RHIC from space

Manhattan

What I’m going to talk about

2

A brief overview of sPHENIX

How we “do” SRO

The outsized role SRO played in 2024

sPHENIX data logging

Data compression

Updates for Run 2025

There are 3 more sPHENIX Detector talks

I’ll try to put things into a bit more context for a more useful overview how we ran things

This is how 2023 ended…

3

During the 2023 RHIC Run, on August 1, the

accelerator developed a problem with a “Valve

Box” that damaged an important magnet and

led to the loss of a substantial amount of

Helium

After an initial investigation, we had to terminate the 2023 beam operations, to resume

in 2024 (which was a much better Run…)

2024 was the polarized p-p run (with 3 weeks of Au+Au at the end)

p-p has a much higher collision rate than Au+Au, requiring more triggers than Au+Au

(where we can pretty much get all min-bias triggers to tape)

The higher collision rate is where our streaming-readout really added a lot of physics!

The sPHENIX Detector

Hadronic Calorimeters

Electromagnetic Calorimeter

Time Projection Chamber (TPC)

Minimum Bias Detector (MBD)

Intermediate Tracker (INTT)

Vertex Detector (MVTX)

4

Not shown: an event plane detector and

a small timing detector

DAQ Overview

10/21/2020
5

• DCM-2 receives data from digitizer, zero-suppresses and packages

• SEB collects data from a DCM group (~20)

• EBDC Event Buffer and Data Compressor (~40)

• Buffer Box data interim storage before sending to the computing center (6)

Data Concentration

Rack Room

On Detector Rack Room Rack Room

DCM
DCM

DCM
DCM2

SEB

SEB

Buffer Box

Buffer Box

DCM
DCM

DCM
DCM2

DCM
DCM

DCM
DCM2

DCM
DCM

DCM
FEE

DCM
DCM

DCM
FEE

DCM
DCM

DCM
FEE SEB

EBDCFELIX

EBDCFELIX

EBDCFELIX

Buffer Box

DCM
DCM

DCM
FEE

DCM
DCM

DCM
FEE

DCM
DCM

DCM
FEE

To

HPSS

(Computing

Center)

100+ Gigabit

Crossbar

Switch

Buffer Box

Buffer Box

Buffer Box

Some of our DAQ gear at the experiment

6

EBDCFELIX

EBDCFELIX

EBDCFELIX

DCMDCMDCMFEE

DCMDCMDCMFEE

DCMDCMDCMFEE

EBDCFELIX

EBDCFELIX

EBDCFELIX

DCMDCMDCMFEE

DCMDCMDCMFEE

DCMDCMDCMFEE

EBDCFELIX

EBDCFELIX

EBDCFELIX

DCMDCMDCMFEE

DCMDCMDCMFEE

DCMDCMDCMFEE

EBDCFELIX

EBDCFELIX

EBDCFELIX

DCMDCMDCMFEE

DCMDCMDCMFEE

DCMDCMDCMFEE

EBDCFELIX

EBDCFELIX

EBDCFELIX

DCMDCMDCMFEE

DCMDCMDCMFEE

DCMDCMDCMFEE

EBDCFELIX

EBDCFELIX

EBDCFELIX

DCMDCMDCMFEE

DCMDCMDCMFEE

DCMDCMDCMFEE

EBDCFELIX

EBDCFELIX

EBDCFELIX

DCMDCMDCMFEE

DCMDCMDCMFEE

DCMDCMDCMFEE

EBDCFELIX

EBDCFELIX

EBDCFELIX

DCMDCMDCMFEE

DCMDCMDCMFEE

DCMDCMDCMFEE

EBDCFELIX

EBDCFELIX

EBDCFELIX

DCMDCMDCMFEE

DCMDCMDCMFEE

DCMDCMDCMFEE

EBDCFELIX

EBDCFELIX

EBDCFELIX

DCMDCMDCMFEE

DCMDCMDCMFEE

DCMDCMDCMFEE

EBDCFELIX

EBDCFELIX

EBDCFELIX

DCMDCMDCMFEE

DCMDCMDCMFEE

DCMDCMDCMFEE

EBDCFELIX

EBDCFELIX

EBDCFELIX

DCMDCMDCMFEE

DCMDCMDCMFEE

DCMDCMDCMFEE

EBDCFELIX

EBDCFELIX

EBDCFELIX

DCMDCMDCMFEE

DCMDCMDCMFEE

DCMDCMDCMFEE

EBDCFELIX

EBDCFELIX

EBDCFELIX

DCMDCMDCMFEE

DCMDCMDCMFEE

DCMDCMDCMFEE

EBDCFELIX

EBDCFELIX

EBDCFELIX

DCMDCMDCMFEE

DCMDCMDCMFEE

DCMDCMDCMFEE

EBDCFELIX

EBDCFELIX

EBDCFELIX

DCMDCMDCMFEE

DCMDCMDCMFEE

DCMDCMDCMFEE

DCMDCMDCMDCM2
SEB

SEB

DCMDCMDCMDCM2

DCMDCMDCMDCM2

DCMDCMDCMFEM

DCMDCMDCMFEM

DCMDCMDCMFEM SEB

DCMDCMDCMDCM2
SEB

SEB

DCMDCMDCMDCM2

DCMDCMDCMDCM2

DCMDCMDCMFEM

DCMDCMDCMFEM

DCMDCMDCMFEM SEB

DCMDCMDCMDCM2
SEB

SEB

DCMDCMDCMDCM2

DCMDCMDCMDCM2

DCMDCMDCMFEM

DCMDCMDCMFEM

DCMDCMDCMFEM SEB

DCMDCMDCMDCM2
SEB

SEB

DCMDCMDCMDCM2

DCMDCMDCMDCM2

DCMDCMDCMFEM

DCMDCMDCMFEM

DCMDCMDCMFEM SEB

DCMDCMDCMDCM2
SEB

SEB

DCMDCMDCMDCM2

DCMDCMDCMDCM2

DCMDCMDCMFEM

DCMDCMDCMFEM

DCMDCMDCMFEM SEB

DCMDCMDCMDCM2
SEB

SEB

DCMDCMDCMDCM2

DCMDCMDCMDCM2

DCMDCMDCMFEM

DCMDCMDCMFEM

DCMDCMDCMFEM SEB

DCMDCMDCMDCM2
SEB

SEB

DCMDCMDCMDCM2

DCMDCMDCMDCM2

DCMDCMDCMFEM

DCMDCMDCMFEM

DCMDCMDCMFEM SEB

DAQ

machines
DAQ

Machines

Disk Enclosure

(102 14TB disks)

BufferBoxes

Network switch

Trigger/Timing

system

RCDAQ – Some of the High Points

• Each interaction with RCDAQ is a network connection that transmits the action to be taken

and a response coming back

• The most-often used implementation is an atomic shell command. There is no “starting an

application and issuing internal commands” (think of your interaction with, say, root)

• That makes everything in RCDAQ inherently scriptable in standard bash or your other

favorite shell (or python)

• We start a sPHENIX DAQ run by pressing one button that fires off a script that takes

care of it all

• In test beams and tests in your lab you can script entire measurement campaigns and

run them “on autopilot” – think bias voltage scans, position scans etc

• RCDAQ out of the box doesn’t know about any particular hardware. All knowledge how to

read out something, say, the FELIX board, comes by way of a plugin that teaches

RCDAQ how to do that.

• All RCDAQ control interfaces are network-transparent

• There is no practical limit for concurrent control connections for RCDAQ
7

How we read out the detector

8

At the core of the DAQ is a multitude of individual “RCDAQ” processes on as many PCs

that read out a part of the detector

RCDAQ is a versatile DAQ system that can be run standalone or as part of a “cohort”

In the latter case, the RCDAQ instances are controlled by a meta-control process “run

control” (rc for short)

RCDAQ server

Network USB PCIe

HardwareHardware Hardware

RCDAQ Client
RCDAQ Client

RCDAQ Client

RCDAQ server

Run Control Server

(rc_server)

RCDAQ server
RCDAQ server

RCDAQ server
RCDAQ server

RCDAQ server
RCDAQ server

RCDAQ server
RCDAQ server

RCDAQ server
RCDAQ server

rc_client rc_client

Standalone
As a “cohort”

This year, a full complement

consisted of 61 RCDAQ

instances

How does RCDAQ support “Streaming Readout”?

9

RCDAQ itself is pretty much unaware of what kind of data it reads

It has a concept of “read the data it is offered and don’t care what it is”

(It can read out your detector, obviously, but store really any kind of data in its data stream)

In that sense it doesn’t really care (or even know) how the front-ends arrived at the decision

to send data up

Triggered or streaming, no matter - when data arrive, they are getting stored

All the magic lies in the RCDAQ plugins that teach RCDAQ how to read out a given kind of

front-end electronics

We have many different plugins that allow RCDAQ to read our different detectors (and

many more to support readout hardware you will find in your typical test beam)

#!/bin/bash

rcdaq_client load librcdaqplugin_dam.so

rcdaq_client create_device device_dam 1 4001 1 128

Here:

DAM = “Data Aggregation Module”

aka “Felix card”

The Timing System holds it all together

10

We picked a convenient multiple of the beam clock frequency (x6)

We have a global 64 bit master beam-crossing (BCO) counter.

We transmit 40 of the 64 bits to the FELIX Cards, those 40 bits go into the data stream

The FELIXes again pass 20 bits on to the FEEs for “micro-alignment” between FEEs

This data block (96 bits) is sent out for each RHIC beam crossing (every ~110ns):

40 bits BCO

One beam crossing

Trigger/Timing system

11

Example: (older – 2021) sPHENIX TPC data

Clock values embedded in FEE data

0000000 feee ba5e 0ff1 0001 7229 f7a0 0088 0004

0000020 002f 8782 0004 ffff 0081 0000 0050 0050

…

0001020 d72c 0081 feed 0000 0088 3e2b 0004 feed

0001040 000f 0088 9f7a 0000 0000 0007 ffff 58af

…

0002100 0088 ad79 0004 feed 0017 0088 9f7a 0000

0002120 0000 000f ffff 58af 0081 0008 0000 ffff

…

0004740 0004 feed 0027 0047 0088 9f7a 0000 8782

0004760 0000 0004 001f ffff ffff 58af 0000 0000

FELIX Hdr

FEE structures

Clock values

bx 9f7a0

 bx 9f7a0

 bx 9f7a0

 bx 9f7a0

…

40 bits BCO

In this way you can verify the integrity of the internal data

structures, and sort the data by “time”

I’m showing an older version here since it’s easier to see

Example – INTT (Intermediate Tracker)

12

The left column are BCO’s that were triggered

on

The right column shows the SRO data from

(1/8th) of the INTT (not all triggers have data in

every portion)

You can see the matching BCO numbers

40 bits

Triggered and Streaming Readout

13

I have talked about sPHENIX’s combined triggered + streaming readout in various places

On a trigger, we always read out everything

But then, for the SRO-capable tracking detectors, we don’t say “stop” right away but cover

the following beam crossings as well

We were able to keep streaming for 50us or ~460 additional beam crossings (much more

than we thought we could!)

That added, per original trigger, between 10-25 additional collisions in the data stream

must-have

opportunistic

What we thought we could do

What we we able to do

Data/Trigger rate management

14

Here is a 3-day timeline of RHIC stores

One can see the high luminosity at the begin of the store, going down over the course of a

typical 8-hour store

(the ZDC rates are captured all the time, the min-bias rates I’ll show in a moment only when

our DAQ is running)

ZDC Rates

Store Store Store Store Store Store

Dynamic data rate management

15

How many “streaming” collisions you get depends on the current RHIC luminosity

470KHz -> ~24 collisions in any 50 s

280KHz -> ~14 collisions in any 50 s

Here we adjusted the triggers for the rates at the begin of each new DAQ run, leading to a

“decay” of the data rate over the course of such a run

470KHz 280KHzMin-Bias rates

One RHIC Store

DAQ RunDAQ RunDAQ RunDAQ RunDAQ Run DAQ Run

Dynamic data rate management

16

We later changed to a “dynamic” rate management

Over the course of a DAQ run we re-calculated and adjusted the min-bias trigger scaledown

every 3 minutes

Min-bias in p-p is not a super-valuable trigger, hence the saledown

What this really did is control the number of “50 s streaming intervals” we would schedule to

capture more of streaming collisions at lower collision rates

Now the DAQ rates are staying constant or even increase (coarse adjustment by int. numbers)

Much better use of the available DAQ bandwidth!

DAQ RunDAQ RunDAQ RunDAQ RunDAQ Run DAQ Run DAQ Run

One RHIC Store

after dynamic rate management

Here is how this looks

17

The green (positive) is data incoming from the DAQ

The yellow (negative) is data going out to permanent storage

At this point we had to choose between taking data and sending data to storage because we

maxed out our disk bandwidth

Not a complaint! The fact that we reached that limit is a measure of how well stuff worked!

But I’ll talk about some upgrades at the end…

Access

Beam

dump

Beam

dump

Access
APEX

Polarization.

Measurement

Two days worth of data taking

sPHENIX Data Flow to Storage

18

One copy of the raw data goes to the HPSS tape storage system

One copy goes to the computing farm for near-line monitoring, calibration, reconstruction

Much faster turn-around

We can devote more tape drives to writing

DCM
DCM

DCM
DCM2

SEB

SEB

Buffer Box

Buffer Box

Buffer Box

Buffer Box

Buffer Box

DCM
DCM

DCM
DCM2

DCM
DCM

DCM
DCM2

DCM
DCM

DCM
FEM

DCM
DCM

DCM
FEM

DCM
DCM

DCM
FEM SEB

EBDCFELIX

EBDCFELIX

EBDCFELIX

Buffer Box

DCM
DCM

DCM
FEE

DCM
DCM

DCM
FEE

DCM
DCM

DCM
FEE

100+ Gigabit

Crossbar

Switch

To HPSS

To the
Farm

After SRO: Multi-threaded Data compression

19

After all data reduction methods are applied, the data are still compressible (try gzip on your

data file… you will be surprised…)

Our raw data format supports a late-stage data compression that works on an I/O buffer:

Our DAQ readout machines all have 96 CPU cores

We run a multi-threaded compression on the output buffers before writing

I implemented 4 different compression levels to choose from - 3 LZO algorithms, and ”bz2”

Compression yields vary between 30% and 70% - 70% means 100GB become 70GB.

Better use of disk storage and also network throughput.

Un-compress

New buffer with the compressed one as

payload, header says so

compression

 algorithm

Add new

buffer hdr

buffer buffer buffer buffer buffer buffer

Original uncompressed buffer restored

This is what a file then looks like

On readback:

Compression levels

20

The original before-compression buffer size needs to be in the new header (so I know how

much memory to allocate when uncompressing)

That makes it easy to calculate the per-buffer compression yield

The yields vary a lot by detector. Some samples from a utility that can look at that:

MVTX:

INTT:

TPC:

The TPC has too much data for “bz2” compression to be used – too slow

buffer at record 0 length = 11411347 1393 marker = ffffbefa BZ2 Marker Or.length: 33680192 33.8815%

buffer at record 1393 length = 11439349 1397 marker = ffffbefa BZ2 Marker Or.length: 33809176 33.835%

buffer at record 2790 length = 11473177 1401 marker = ffffbefa BZ2 Marker Or.length: 34190424 33.5567%

buffer at record 23294 length = 29511868 3603 marker = ffffbefa BZ2 Marker Or.length: 66846744 44.1485%

buffer at record 26897 length = 29587534 3612 marker = ffffbefa BZ2 Marker Or.length: 66846968 44.2616%

buffer at record 30509 length = 29735365 3630 marker = ffffbefa BZ2 Marker Or.length: 66847016 44.4827%

buffer at record 0 length = 254832068 31108 marker = ffffbcfe LZO Marker Or.length: 369239544 69.0154%

buffer at record 31108 length = 255366094 31173 marker = ffffbcfe LZO Marker Or.length: 369165720 69.1738%

buffer at record 62281 length = 255258927 31160 marker = ffffbcfe LZO Marker Or.length: 369129368 69.1516%

And what did we get?

21

On average we wrote between 490 and 530TB/day

“Best week” had more than 4PB or 580TB/day

A total of 54PB on tape for Run 2024

The steeper slope at the

beginning is from what I called

“period 1” where we took high-

speed data for the Jet program

We then ramped up the

triggered+streaming readout

for the Upsilon and Heavy

Flavor programs

Let me show a wonderful event display…

22

There are many more at https://www.sphenix.bnl.gov/EventDisplays

Don’t want to steal the next speaker’s thunder…

https://www.sphenix.bnl.gov/EventDisplays

The Future / DAQ Upgrades

23

I alluded to maxing out the disk bandwidth for data logging – theoretically 22GB/s, 19.5GB/s

long-term average in reality

RHIC delivered data for about 16GB/s

I showed before that we had to choose between data taking and data transfer to the

computing center later in the run with Streaming Readout

Across the board, we will double our disk bandwidth by going to 12 instead of 6 bufferboxes

We will also continue to eliminate inefficiencies in the DAQ, failures, etc

Lots of smaller upgrades, such as “fractional scaledowns”

Full detector and streaming readoutJet program earlier in the run

Summary

24

We had a good run 2024!

Nothing is perfect in year 2 of a new experiment, but the DAQ and the detector worked

exceedingly well

The Streaming Readout was a success story beyond our wildest dreams

The multi-threaded compression of the raw data essentially doubled our DAQ logging

bandwidth

Buying more hardware to double the DAQ bandwidth again

I didn’t have time to talk about our trigger system, but that also worked beautifully

We got about 54PB of raw data to tape, with weekly averages of > 500TB/day

After about 45 weeks of being at the experiment pretty much 7 days a week, we are looking

forward to a winter break of the 24/7 ops

But mostly we are looking forward to the next 2025 RHIC Run starting in March!

The End on October 21, 2024

25

The End

26

Au-Au statistics

27

Not primarily goal to be a physics production run

Still got more statistics in some physics programs than in 2023 (ok that wasn’t so hard, but

still…)

Also gives us data to sink our teeth into Au+Au real data analyses to hit the ground running

in 2025

Data logging

28

Each RCDAQ instance writes one output file at a given time

The files roll over after a prescribed size (typically 20GB) is reached

The data from one DAQ “run” typically consist of about 1500-2500 files

For reconstruction/analysis, those files need to get combined into the full detector response

daq=> select count(*) from filelist where runnumber=53081;

 count

 2403

(1 row)
The file rollovers from this

particular RCDAQ instance

Buffer Box

Buffer Box

Buffer Box

Buffer Box

Buffer Box

Buffer Box

Buffer Box

No Event builder in sPHENIX

We are storing individual files at the SEB/EBDC level on central servers

This makes our operations a lot less risky, less moving parts, simpler software

29

SEB

SEB

SEB

EBDC

EBDC

EBDC

Network

Switch

Events

For the reconstruction, one would need to combine about 60 files with the pieces of a

given event

Online, we would do that for a fraction of event (like 10-50Hz worth) for onl. monitoring

…

…

…

…

…

…

…

…

Individual files

Streaming Readout

30

sPHENIX has a mix of triggered (Calorimeters, MBD, sEPD) and streaming (tracking

system) readout

We distribute the unique Beam Clock Counter (40 bits of the full 64) to the SRO front-

ends for each RHIC crossing (@9.4MHz)

The Trigger/Timing system (that acts as a detector in its own right) records ”all we

need to know” – scalers, trigger input patterns, and, yes, the Beam Clock Counter

(BCO)

This is used to align the SRO data with each other and to correlate the data with the

calorimeters

triggered

streaming

Streaming readout, here we come!

Past the FEE, the readout is completely oblivious to the readout mode

It doesn’t care how the front-end arrived at the decision to send up the data.

Triggered or streaming, from the readout perspective they look the same

I have come to regard a particular feature of SRO as the defining property,

even if you ultimately trigger your front-end:

 There is no synchronized end to a given event!

While “event” n is streaming, in other places, event n-1 (or -2, -3, -4…) isn’t

finished yet, and data from different crossings are interleaved

And that’s where the speed increase can be significant even for “classic”

systems

31

Streaming Readout and Packets

32

For streaming data, the “Packet” paradigm changes its meaning a bit

It becomes like a packet in the Voice-Over-IP sense - VoIP is chopping an audio waveform into

conveniently-sized chunks to transfer through a network

Packet Packet Packet Packet Packet

We are chopping the streaming detector data into conveniently-sized packets for storage

Here: Streaming sPHENIX TPC data (entire sPHENIX tracking system streams!)

$ dlist rcdaq-00002343-0000.evt -i

 -- Event 2 Run: 2343 length: 5242872 type: 2 (Streaming Data) 1550500750

Packet 3001 5242864 -1 (sPHENIX Packet) 99 (IDTPCFEEV2)

$

32

On Autopilot - Scripts at work

Very often – especially in your R&D days – you want to step through a range of values of a

configuration parameter and see what your detector prototype has to say

• Bias voltage scans (we characterized gazillions of SiPMs)

• Position scans

• Temperature scans

• And on and on

Such a measurement is best done in a script that reads predetermined positions / voltage

settings / what have you and performs the measurement

I picked an example: What is the response uniformity of a calorimeter module when a shower

develops in different places? (We were very worried about this)

We were simulating different shower positions by “writing light with a light fiber” on the module

front face

33

Measurements on autopilot through scripting

34

Calorimeter

Module

PMT

(later SiPM)

X-Y step motor

Light Fiber

Simulate shower incidence positions by moving a light fiber in x and y

take a run for each position w/ 4000 events

50 x 25 = 1250 positions (later we had 60x60, you really want to automate that)

Let it run overnight, come back in the morning, look at the data

The Script

35

25 positions in y

 move the Y motor

 50 positions in x

 move the x motor

 next x

next y

#! /bin/sh

STARTPOSX=0

STARTPOSY=9900

INCREMENTX=200

INCREMENTY=-200

CURRENTPOSY=$STARTPOSY

for posy in $(seq 25) ; do

 quickmove.sh $CURRENTPOSY 2

 sleep 5

 CURRENTPOSY=$(expr $CURRENTPOSY + $INCREMENTY)

 CURRENTPOSX=$STARTPOSX

 for posx in $(seq 50) ; do

 echo "moving to $CURRENTPOSX"

 quickmove.sh $CURRENTPOSX 1

 sleep 5

 CURRENTPOSX=$(expr $CURRENTPOSX + $INCREMENTX)

 done

done

The DAQ operation becomes an

integral part of your shell environment

Automatic end after 4000 events

 start the DAQ

rcdaq_client daq_set_maxevents 4000

 rcdaq_client daq_begin

 wait_for_run_end.sh

Why do we call those “BufferBoxes”?

10/21/2020
36

36

The data rate at a collider is “bursty” – high luminosity at the

begin of a store, then ”burning off” – change of a factor of 2

Also gaps in data flowing with collider dump/fill, access, APEX,

MD

This Buffer boxes allow us to send the average, rather than the

peak rate through the WAN

Buffer Box

Buffer Box

Buffer Box

Buffer Box

Buffer Box

Buffer Box

100+ Gigabit

Crossbar

Switch

2016 (last PHENIX

run) beam intensity

over a week

Average

A typical RCDAQ Setup Script

#! /bin/sh

this sets up the DRS4 readout with 5GS/s, a negative

slope trigger in channel 1 with a delay of 140

if ! rcdaq_client daq_status > /dev/null 2>&1 ; then

 echo "No rcdaq_server running, starting..."

 rcdaq_server > $HOME/rcdaq.log 2>&1 &

 sleep 2

fi

MYSELF=$(readlink -f $0)

rcdaq_client daq_clear_readlist

rcdaq_client create_device device_file 9 900 "$MYSELF”

rcdaq_client load librcdaqplugin_drs.so

rcdaq_client create_device device_drs -- 1 1001 0x21 -150 negative 140 3
37

If no server is running,

we start one here.

We convert the script filename into a full path

We clear all existing

definitions

We load the plugin(s) and define the device(s)

We comment a lot as a

way of documentation

Here is the actual setup script for our TPC (FELIX)

#!/bin/bash

RunType=beam

H=$RCDAQHOST

[-z "$H"] && H=$(hostname)

MYSELF=$(readlink -f $0)

rcdaq_client daq_clear_readlist

rcdaq_client create_device device_file 9 900 "$MYSELF"

rcdaq_client load librcdaqplugin_dam.so

rcdaq_client create_device device_dam 1 4${H:4:2}1 1 128

rcdaq_client daq_set_runcontrolmode 1

38

Abridged version, just the essentials

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5: DAQ Overview
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31: Streaming readout, here we come!
	Slide 32: Streaming Readout and Packets
	Slide 33
	Slide 34
	Slide 35
	Slide 36: Why do we call those “BufferBoxes”?
	Slide 37
	Slide 38

