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sPHENIXHeavy flavor at the EIC
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• Why?
• Main HF production is through photon-gluon processes
• Good probe of gluon parton distribution function

arXiv.2207.10632
arXiv:2103.05419

https://doi.org/10.48550/arXiv.2207.10632
https://doi.org/10.48550/arXiv.2103.05419
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sPHENIX
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Seeing physics events



sPHENIXCurrent trigger system

• RHIC pp collision rate is 3 MHz
• sPHENIX calorimeter DAQ max. rate is 

15 kHz
• Limits sPHENIX to recording ~0.5% of 

triggered proton-proton collisions
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• RHIC operated at 1 MHz in 2024, and we averaged 

streaming at 30%
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sPHENIXThe proposal
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• Embed ML algorithms on FPGAs
• Stream MVTX and INTT to FPGAs and determine if HF event is present 

through topology
• Send tag downstream to readout TPC
• Allows us to sample remaining 70% of collisions
• Successfully renewed in 2023
• Successful LOI in Nov. 2024, DOE requested full proposal in Jan. 2025 

with outlook to EIC



sPHENIXCase study: AI HF selections
• Question: Is ML better for selecting HF 

decays over conventional selections?
• Challenge: Must run online, in FPGA. 

Hence variables must be “simple”
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sPHENIXConstructing ML algorithms
• Developed algorithms as Graph Neural Networks (GNN)
• Advantageous over Convolutional Neural Networks (CNN) by adding edge 

information
• Detector and physics knowledge will improve predictions
• Algorithms deployed at several points on FPGAs:
1. Data decoding – conventional logic
2. Hit clustering – conventional logic
3. Local to global conversiong – conventional logic
4. Fast tracking – machine learning
5. Topological separation of HF signal from background – machine learning

02/12/24 ML4HF C. Dean 9



sPHENIXFeedback algorithms
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• Tracking algorithms developed using simulated 
signal and background events in the MVTX and 
INTT
• Used these models to feed into physics selection 

models to select interesting events
• Models are bi-directional, local information is passed to 

global and global information is passed back to local to 
refine

• Initial trainings and models are developed on GPU
• NVIDIA Titan RTX, A5000, and A6000
• Will take the model and convert it to IP block for FPGA 

deployment
• Models developed with PyTorch and PyTorch Geometric
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sPHENIXGNNs with set transformers
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The cycle
1. Track information is initially 

defined
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sPHENIXTagging with machine learning
Graph Neural Net design

• Track node input vectors
1. 5 hits (MVTX + INTT)
2. Length of each segment: L = |x!"# − x!|
3. Angle between segments
4. Total length of segments

• Aggregators
1. Primary vertex
2. Secondary vertex

• Current ML tracklet algorithm has 
• Accuracy > 91% for building tracks
• Area under receiver-operating characteristic curve 

(AUC) > 97% liken to “probability of combining the 
correct track elements compared to incorrect 
elements” – random chance is 50%

• Purity and rejection studies are underway

e!" = s!"x! is track-aggregator messages
s!" is the weight

ECML PKDD 2022, Sub 1256
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https://link.springer.com/book/10.1007/978-3-031-26409-2


sPHENIXpT estimation
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• A feed-forward neural net is used to predict the pT
• Uses least-squares method to estimate track radius
• ~15% improvement in tracking with pT estimation



sPHENIX

Decision module

Realizing in firmware
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sPHENIXHardware design

• Decision hardware is currently a BNL-712 FELIX board
• Same as deployed at sPHENIX for ease of integration
• AMD/Xilinx Kintex UltraScale FPGA (xcku115-flvf1924-2-e) 

• Ongoing work on reducing resource usage
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sPHENIXDecoding
• Entire decision making must be performed in roughly 10 μs to allow recording of 

TPC hit
• Parallelization of complex tasks in necessary to achieve this

• MVTX alone consists of 432 pixel chips with > 500k pixels / chip
• 48 staves x 9 chips / stave
• Chip data is sent in groups of 3 chips (called FEEID), 3 x reduction in resource needs

• Luckily, occupancy is low, ~ 20 hits / chip / collision for proton-proton collisions
• Each FEEID’s information is sent to its own decoder to find active pixels
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sPHENIXClustering
• ALPIDE reads data out in double columns from 0 to 1023

• Decoded hits thus arrive double column-by-double column
• Clusters can be assembled as they arrive

• No hits in the next columns three adjacent pixels means cluster is 
ready to be sent out

• After finding pixel with centroid, pixel can be divided into 
grids to improve resolution using only 2 more bits

• Can get 13.5 μm cluster resolution at the global level from 31 
bits
• 6 bits to define layer and sensor number
• 4 bits to define chip number on the sensor
• 21 bits for cluster position on chip (9 for row, 10 for column, 2 for 

quadrant)
• After changing to global cluster position, detector layout has 

become abstracted
• Current tracking resolution in global coordinates is 156 μm without 

full alignment
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Simulation

Simulation



sPHENIXTagging with machine learning
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• Algorithms must have low 
latency and resource use
• hls4ml translates NN algorithms 

into high level synthesis
• Also generates IP cores for easy 

implementation
• Rest of firmware can be built 

around IP core to calculate 
algorithm response 

arXiv 2103.05579
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https://arxiv.org/abs/2103.05579


sPHENIXTracking, vertexing and triggering
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• PV R2 value = 0.996
• PV maximum error = 47 μm
• Robustness to alignment tested using Gaussian 

smearing of hit coordinates
• Track and trigger efficiency for b-hadrons = 90.6% 

(hls4ml), 97.4% (FlowGNN)
• Full tracking and triggering benchmarked to 

9.2 μs, within 10 μs requirement!

Bkg. track rejection Signal eff. Sample purity*
90% 72.5% 7.25%
95% 48.9% 9.78%
99% 15.0% 15.0%

https://arxiv.org/abs/1804.06913
https://arxiv.org/abs/2204.13103


sPHENIXPutting it all together
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PCIe
Decoder
Clusterizer
Local-to-global conversion
GNN aggregation
GNN prediction
Current as of this morning!

Single stave utilization



sPHENIXPutting it all together
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PCIe
Decoder
Clusterizer
Local-to-global conversion
GNN aggregation
GNN prediction
Current as of this morning!

8 stave utilization



sPHENIXScaling to full system
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LUT (663K) FF (1.3M) BRAM (2K) DSP (5.5K)

Infrastructure 87K (13.1%) 196K (14.8%) 879 (40%) -

Decoder 98K (14.7%) 91K (7%) 432 (21%) -

Clustering 267K (40%) 213K (16.4%) - -

Transformation 25K (3.8%) 22K (1.7%) 540 (27%) 576 (10.4%)

AI module (FlowGNN) 194K (29%) 214K (16.4%) 406 (20%) 488 (8.8%)

AI module (hls4ml) 40K (6.1%) 45K (3.5%) 31 (1.5%) 517 (9.4%)

• 72 decoders, clusterizers, and transformers
• 1 tracking algorithm and trigger algorithm
• This covers half of sPHENIX, and only the MVTX



sPHENIXWorkflow, December 2021
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sPHENIXTimeline
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2021 2022 2023/2024 2025

• Project 
started

• Initial 
simulations 
constructed

• First data for 
algorithm 
training

• SRO 
development

• Fast tracking 
algorithms in 
place

• GPU 
feedback 
machine 
design

• Initial 
bitstream 
synthesis

• Refine 
interface 
between 
system and 
detectors

• Improve 
algorithms 
with latest 
data stream 
and 
commissioning 
info

• Deploy 
device at 
sPHENIX

• Design 
updated 
system

• Take 
advantage of 
new 
technology if 
required

• Deploy 
device at 
EIC
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The FastML Team
• Cross-discipline group of computer scientists, engineers and physicists
• Formed in 2020 from DE-FOA-0002490
• Consists of groups from
• Los Alamos National Laboratory
• Massachusetts Inst. of Technology
• New Jersey Institute of Technology
• Fermilab
• Oak Ridge National Laboratory
• Stony Brook
• Georgia Institute of Technology
• University of North Texas
• Central China Normal University



sPHENIXOvercoming with AI
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Selection signal



sPHENIXsPHENIX
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First run year 2023

s## [GeV] 200

Trigger Rate [kHz] 15

Magnetic Field [T] 1.4

First active point [cm] 2.5

Outer radius [cm] 270

η ⩽1.1

z$%&  [cm] 10

N(AuAu) collisions* 1.43x1011

* In 3 years of running



sPHENIXTracking at sPHENIX
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• Tracking consists of 3 sub-detectors:
• Pixel Vertex Detector (MVTX)
• Intermediate Silicon Tracker 

(INTT)
• Time Projection Chamber (TPC)

• MVTX and INTT are both capable of 
streaming readout

• Combined tracking to r = 10.3 cm                 

MVTX

• 3 active layers
• 9 ASICs/stave
• 27 cm active length/stave
• Pixel detector

INTT

• 2 active double-layers
• 47 cm active length/ladder
• Silicon strip detector


