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Nanosecond machine learning event classification with
boosted decision trees in FPGA for high energy physics
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Asstract: We present a novel implementation of classification using the machine learning/artificial
intelligence method called boosted decision trees (BDT) on field programmable gate arrays (FPGA).
The firmware i ion of binary requiring 100 training trees with a maximum
depth of 4 using four input variables gives a latency value of about 10 ns, independent of the clock
speed from 100 to 320 MHz in our setup. The low timing values are achieved by restructuring the
BDT layout and reconfiguring its parameters. The FPGA resource utilization is also kept low at
a range from 0.01% to 0.2% in our setup. A software package called FwXuacuINA achieves this
implementation. Our intended user is an expert in custom electronics-based trigger systems in high
energy physics experiments or anyone that needs decisions at the lowest latency values for real-time
event classification. Two problems from high energy physics are considered, in the separation of
electrons vs. photons and in the selection of vector boson fusion-produced Higgs bosons vs. the
ion of the multijet processes.
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Nanosecond machine learning regression with deep
boosted decision trees in FPGA for high energy physics
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Asstract: We present a novel application of the machine learning / artificial intelligence method
called boosted decision trees to estimate physical quantities on field programmable gate arrays
(FPGA). The software package FwXmackINa features a new architecture called parallel decision
paths that allows for deep decision trees with arbitrary number of input variables. It also features a
new optimization scheme to use different numbers of bits for each input variable, which produces op-
timal physics results and ultracfficient FPGA resource utilization. Problems in high energy physics
of proton collisions at the Large Hadron Collider (LHC) are considered. Estimation of missing
transverse momentum (E™*) at the first level trigger system at the High Luminosity LHC (HL-LHC)
experiments, with a simplified detector modeled by Delphes, is used to benchmark and characterize
the firmware performance. The firmware implementation with a maximum depth of up to 10 using
eight input variables of 16-bit precision gives a latency value of O(10) ns, independent of the clock
speed, and O(0.1)% of the available FPGA resources without using digital signal processors.

Keyworps: Data reduction methods; Digital electronic circuits; Trigger algorithms; Trigger con-
cepts and systems (hardware and software)
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used as an anomaly detector, built with a forest of deep decision trees on

FPGA, field programmable gate arrays. Scenarios at the Large Hadron Collider
at CERN are considered, for which the autoencoder is trained using known
physical processes of the Standard Model. The design is then deployed in real-
time trigger systems for anomaly detection of unknown physical processes,

such as the d

f: [ f the Higgs b The inference is

made with a latency value of 30 ns at percent-level resource usage using the
Xilinx Virtex UltraScale+ VU9P FPGA. Our method offers anomaly detection at
low latency values for edge Al users with resource constraints.

Unsupervised artificial intelligence (AD algorithms enable signal-
agnostic searches beyond the Standard Model (BSM) physics at the
Large Hadron Collider (LHC) at CERN'. The LHC is the highest energy
proton and heavy ion collider that is designed to discover the Higgs
undiscovered BSM physics (see, .g."). Due to the lack of signs of
BSM in the collected data despite the plethora of searches conducted
at the LHC, dedicated studies look for rare BSM events that are even
more difficult to parse among the mountain of ordinary Standard
Model processes” . An active area of Al research in high energy phy-
sics is in using autoencoders for anomaly detection, much of which

i icipated BSM physics. Much of

algorithms executed ona computing farm. The first-level FPGA p
of the trigger system accepts between 100 kHz to 1 MHz of collisions,
discarding the remaining=99% of the collisions. Therefore, it is
essential to discovery that the FPGA-based trigger system s capable of
triggering potential BSM events. A previous study aimed at LHC data
has shown that an anomaly detector based on neural networks can be
implemented on FPGA with latency values between 80 to 1480 s,
depending on the design”.

In this paper, we present an interpretable implementation of an
autoencoder using deep decision trees that make inferences in 30 ns.
As discussed previously™”, decision tree designs depend only on

threshold resulting in fast and efficient FPGA imple-

the existing [ using neural netw
focuses on identifying BSM physics in already collected data*". Such
ideas have started to produce experimental results on the analysis of
data collected at the LHC™ . A related but separate endeavor, whichis
the subject of this paper, is enabling the identification of rare and
anomalous data on the real-time trigger path for more detailed
investigation offline.
‘The LHC offers an environment with an abundance of data at a 40
MHz collision rate, corresponding to the 25 ns time period between
ive collisions. The real-time trigger path of the ATLAS and CMS
", e.g. processes data using custom electronics using
field programmable gate arrays (FPGA) followed by software trigger

minimal reliance on digital signal processors. We train
the autoencoder on known Standard Model (SM) processes to help
trigger the rare events that may include BSM.

In scenarios for which a specific BSM model is targeted and its
dynamics are known, dedicated supervised training against the SM
sample, i, BSM-vs-SM classification, would likely outperform an
unsupervised approach of SM-only training. The physics scenarios
considered in this paper are examples to demonstrate that our auto-
encoder s able to trigger on BSM scenarios as anomalies without this
prior knowledge of the BSM specifics. Nevertheless, we consider a
benchmark where our autoencoder outperforms the existing con:
ventional cut-based algorithms.

"School of Medicine, Saint Louis University, Saint Louis, MO, USA. “Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA, USA.
SDepartment of Physics and Engineering, Westmont College, Santa Barbara, CA, USA. " e-mail: tmhong@pitt edu
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Nanosecond hardware regression trees in FPGA at the LHC
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Abstract

We present a generic parallel implementation of the decision tree-based machine learning (ML)
method in hardware description language (HDL) on field programmable gate arrays (FPGA).
A regression problem in high energy physics at the Large Hadron Collider is considered: the
estimation of the de of missing transverse using boosted decision trees
(BDT). A forest of twenty decision trees each with a maximum depth of 10 using eight input
variables of 16-bit precision is executed with a latency of about 10 ns using O(0.1%) resources
on Xilinx UltraScale+ VU9P—approximately ten times faster and five times smaller compared
to similar designs using high level synthesis (HLS)—without the use of digital signal processors
(DSP) while eliminating the use of block RAM (BRAM). We also demonstrate a potential
application in the estimation of muon momentum for ATLAS RPC at HL-LHC.

Keywords: Data processing methods, Data reduction methods, Digital electronic circuits, Trigger

algorithms, and Trigger concepts and systems (hardware and software).

*Corresponding author, tmhong @pitt.edu
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e Parallelizing decision trees
e HLS trees = VHDL trees \




Paper 3: Autoencoder intro TM Hong

-xample: handwritten numbers

e feach it 0, 1, 2, 3, 4 with a sample (doesn’'t know about 9!)
/84 variables (8-bit) 1 variable (20 bit) /84 variables (8-bit)

300x Compress>

Detalls

* |nput-output distance is relatively small = good compression

y.

* |nput-output distance is relatively large = bad compression



Tree autoencoder, w.» B SH= i Hono (i
NN AE . Tree AE

- Training is a black box, done offline * Training is sampling of 1d pdfs
- Latent space is complex - Latent space is simple / interpretable

Latent v 4 .
1

Representation o b L,‘...Ln

°ct % @ ®
.‘i () o}n;"rgv: ......

e

---------- 78 - op 0 @ oo .

Sl Latent data is
P the bin number
Encoder Decoder ] E
From CMS Machine Learning Group X

https://cms-ml.github.io/documentation/training/autoencoders.html

A CV NV oTa R (npTolflTToM{slge=Talo] i EVVACIN @ ST« FPGA version can optionally skip latent sp.

From CMS Public Note, DP-2023/079 z X Distance
Processor
X [ %o |
Deep Decision Tree Engine, Sum
Cross-outs anomaly detector version _
: DDTE-ad, A= 24 by
are mine
Reconstruction term Full regularization term
x X1
Encoder Decoder DDTE-ad, -
) ) Distance
— o d Fn.,Ao
Cross_outs fork =0 .. K-1 trees
are mine :
— A X DDTE-ady_4 sl
[ A
| Find bin . Bin | Find bin
Stanghrd Dewition location index | estimate

Image from_ . .. Input data Encoder Encoded data Decoder  Intermediate Metric
https://medium.com/@rushikesh.shende/autoencoders-variational- output

autoencoders-vae-and-f3-vae-ceba9998773d
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occur simultaneously.
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Paper 3: Training dev’d in-house

Train by samp

e Encoding: Event
Decoding returns “reconstruction point”
e Decoding: Bin = median of the training data in bin

iINg 1d projections

— which bin it's in

- 2R




Paper 3: AE t0o anomaly detector

How does this detect anomalies?
e Define: Distance between input — output = anomaly score

e Non-anomaly
e |nput is similar to training data
o Will likely land in a small bin = close

to the reconstruction point

Y

_____..________I.L_:

e Anomaly
e |nput is not similar to training data

o Will likely land in a large bin =
far from the reconstruction point
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Paper 3: SKip latent space T™ Hong

Don't need latent space in firmware

e Closer look at what it means to encode
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e Skip the encoding & decoding
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Logic flow

¢ | eft-to-right data flow (see right)
e Realized that we can bypass the latent space!

e Encoding = Decoding
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e a S anomaly detector version _
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e Parallel computing
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e All combinatoric logic, so no clocking

between steps = fast fork =0 .. K1 trees
e Mostly comparisons = fast \ — N
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° TeChnlcal lnfo ln baCku p Input data En(ider Encoid data Detoder Intermediate Metric
Siip tis [N

slide

y.


https://arxiv.org/abs/2304.03836

Distance
Processor
x | %o |
Deep Decision Tree Engine, Sum
anomaly detector version _
DDTE-ad, A= 24
X4

DDTE-ad4

Distance
_F Fn, AO
fork =0 .. K-1trees
Data One Hot Decision Path
in OHDP, DDTE-ady 4

OHDP,

active input array
— output array

Qlow

X0 X0

Vv

and ODP

X1 Qhigh

X0

demux

V4

Xy-1

Blow

X4

Vv

Bhigh
X4

v

forv=0 .. V-1 input variables

, Yiow
Xy/-1

S k| p th |S indirectly X o
slide

V4

\/




Paper 3: H125 = ai0 azo = YY bb TM Hong
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Paper 3: Compare with his4dml T H°”9
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Paper 3: VS. hls4dml

Works wel
e Physics (plots)
e FPGA (table)

Comparison
o His4ml NN-AE

Events (unit norm.)

O
N
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Govorkova et al.,

no. 118 (2022)

fwX AE V=56
No. of trees T=30
Max depth D=4

Distribution
x107°
SM Dataset:
B Sci. Data 9
Method:
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Anomaly score A

[Nature Mach. Intell. 4 (2022) 154-161]

e Physics: comparable AUC

e FPGA results

SM acceptance (FPR)

TM Hong

ROC curve

DS: Govorkova et al.
Method: fwX AE V=56

0 02

04 06 08 1
Signal efficiency (TPR)

his4dml fwX (this)

Key take-away:

This result uses HLS trees. Using
VHDL trees projected to be faster

and smaller (next slides).

» Clock speed 200 MHz 200 MHz
Latency 80 ns 30 ns ‘
Interval 5ns 5 Nns
FF 0.5% 0.6%
LUT 3% 9%
DSP 1% 0.8%
BRAM 0.3% 0 A
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Nanosecond machine learning event classification with
boosted decision trees in FPGA for high energy physics
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ABsTRACT: We present a novel implementation of classification using the machine learning/artificial
intelligence method called boosted decision trees (BDT) on field programmable gate arrays (FPGA),
The firmware implementation of binary classification requiring 100 training trees with a maximum
depth of 4 using four input variables gives a latency value of about 10 ns, independent of the clock
speed from 100 to 320 MHz in our setup. The low timing values are achieved by restructuring the
BDT layout and reconfiguring its parameters. The FPGA resource utilization is also kept low at
a range from 0.01% to 0.2% in our setup. A software package called FwXMAcHINA achieves this

implementation. Our intended user is an expert in custom electronics-based trigger systems in high

energy physics experiments or anyone that needs decisions at the lowest latency values for real-time

event classification. Two problems from high energy physics are considered, in the separation of
electrons vs. photons and in the selection of vector boson fusion-produced Higgs bosons vs. the
rejection of the multijet processes.
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AssTrACT: We present a novel application of the machine learning / artificial intelligence method
called boosted decision trees to estimate physical quantities on field programmable gate arrays
(FPGA). The software package FwXmachINA features a new architecture called parallel decision
paths that allows for deep decision trees with arbitrary number of input variables. It also features a
new optimization scheme to use different numbers of bits for each input variable, which produces op-
timal physics results and ultraefficient FPGA resource utilization. Problems in high energy physics
of proton collisions at the Large Hadron Collider (LHC) are considered. Estimation of missing
transverse momentum (Ef*) at the first level trigger system at the High Luminosity LHC (HL-LHC)
experiments, with a simplified detector modeled by Delphes, is used to benchmark and characterize
the firmware performance. The firmware implementation with a maximum depth of up to 10 using
cight input variables of 16-bit precision gives a latency value of O(10) ns, independent of the clock
speed, and O(0.1)% of the available FPGA resources without using digital signal processors.
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—————— —— We present an interpretable implementation of the autoencoding algorithm,
Check for updates used as an anomaly detector, built with a forest of deep decision trees on

FPGA, field programmable gate arrays. Scenarios at the Large Hadron Collider
at CERN are considered, for which the autoencoder is trained using known
physical processes of the Standard Model. The design is then deployed in real
time trigger systems for anomaly detection of unknown physical processes,
such as the detection of rare exotic decays of the Higgs boson. The inference is
made with a latency value of 30 ns at percent-level resource usage using the
Xilinx Virtex UltraScale+ VU9P FPGA. Our method offers anomaly detection at
low latency values for edge Al users with resource constraints.

Unsupervised artificial intelligence (Al algorithms enable signal
agnostic searches beyond the Standard Model (BSM) physics at the
Large Hadron Collider (LHC) at CERN'. The LHC is the highest ene
proton and heavy ion collider that is designed to discover the Hig
boson® and study its properties**as well as to probe the unknown and
undiscovered BSM physics (see, e.g.” ). Due to the lack of signs of
BSM in the collected data despite the plethora of searches conducted
at the LHC, dedicated studies look for rare BSM events tha ven
more difficult to parse among the mountain of ordinary Standard
Model processes” . An active area of Al research in high energy phy
sics is in using autoencoders for anomaly detection, much of which
provides methods to find rare and unanticipated BSM physics. Much of
the existing literature, mostly using neural network-based approaches,
focuses on identifying BSM physics in already collected data'* ™. Such
ideas have started to produce experimental results on the analysis of
data collected at the LHC™ ™. A related but separate endeavor, which is
the subject of this paper, is enabling the identification of rar
anomalous data on the real-time trigger path for more deta
investigation offline,

‘The LHC offers an environment with an abundance of data ata 40
MHz collision rate, corresponding to the 25 ns time period between
successive collisions. The real-time trigger path of the ATLAS and CMS
experiments’™”, e.g., processes data using custom electronics using
field programmable gate arrays (FPGA) followed by software trigger

and

algorithms executed on a computing farm. The first-level FPGA portion
of the trigger system accepts between 100 kHz to 1 MHz of collisions,
discarding the remaining=99% of the collisions. Therefore, it is
essential to discovery that the FPGA-based trigger system is capable of
triggering potential BSM events. A previous study aimed at LHC data
has shown that an anomaly detector based on neural networks can be
implemented on FPGA with latency values between 80 to 1480 s,
depending on the design

In this paper, we present an interpretable implementation of an
autoencoder using deep decision trees that make inferences in 30 s,

As discussed previously™”, decision tree designs depend only on
threshold comparisons resulting in fast and efficient FPGA imple
mentation with minimal reliance on

gital signal processors. We train
the autoencoder on known Standard Model (SM) processes to help
trigger the rare events that may include BSM.

In scenarios for which a specific BSM model is targeted and its
dynamics are known, dedicated supervised training against the SM
sample, ie., BSMvs-SM classification, would likely outperform an
unsupervised approach of SM-only training. The physics scenarios
considered in this pape
encoder is able to trigger on BSM scenarios as anomalies without this
prior knowledge of the BSM specifics. Nevertheless, we consider a
benchmark where our autoencoder outperforms the existing con
ventional cut-based algorithms,

are examples to demonstrate that our auto
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Abstract

We present a

seneric parallel implementation of the decision tree-based machine learning (ML)
method in hardware description language (HDL) on field programmable gate arrays (FPGA)
A regression problem in high energy physics at the Large Hadron Collider is considered: the
estimation of the magnitude of missing transverse momentum using boosted decision trees
(BDT). A forest of twenty decision trees each with a maximum depth of 10 using eight input
variables of 16-bit precision is executed with a latency of about 10 ns using O(0.1%) resources
on Xilinx UltraScale+ VU9P—approximately ten times faster and five times smaller compared

to similar designs using high level synthesis (HLS)—without the use of digital signal processors
(DSP) while eliminating the use of block RAM (BRAM). We also demonstrate a potential

application in the estimation of muon momentum for ATLAS RPC at HL-LHC,
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e Example

e 2d toy dataset, say x = py and y = eta for some SM sample

Data in Data in

ce 1a

Destination bin Decision path

b, not(g;) and not(q;;)

b qj

D10 not(g;) and g;; and not(q;;) Data out Data out
b4

Key idea: Paths can be evaluated in parallel A



TM Hong

Paper 2: Results

Table 3: Benchmark configuration and the FPGA cost. Three groups of information are given. The top-most
group defines the FPGA setup. The second group defines the ML training used for the MET problem and the
Nanosecond Optimization. The third group gives the actual results measured on the FPGA for four tree-depth
combinations of 40-5, 40-6, 20-7, and 10-8.

Key idea:

Parameter Value Comments
FPGA setup
Chip family Xilinx Virtex Ultrascale+
Chip model xcvu9p-flga2104-2L-e
Vivado version 2019.2
Synthesis type C synthesis
HLS or RTL HLS HLS interface pragma: None
Clock speed 320 MHz Clock period is 3.125 ns

ML training configuration & Nanosecond Optimization configuration

ML training method

No. of input variables

Bin ENGINE type

No. of bits for all variables

Boosted decision tree
8

Regression, Adaptive boosting

Deep DEecisioN TREe ENGINE (DDTE)

16 bits for each

binary integers

FPGA cost for 40 trees, 5 depth

Can Im Iement dee trees Latency 6 clock ticks 18.75ns
p p Look up tables 1675 out of 1182240 0.1% of available

Flip flops 1460 out of 2 364 480 < 0.1% of available

FPGA cost for 40 trees, 6 depth
Latency 9 clock ticks 28.125ns
Look up tables 4566 out of 1182240 0.4% of available
Flip flops 2516 out of 2 364 480 0.1% of available

FPGA cost for 20 trees, 7 depth
Latency 15 clock ticks 46.875ns
Look up tables 4568 out of 1182240 0.4% of available
Flip flops 2697 out of 2 364 480 0.1% of available
Block RAM 4.5 out of 4320 0.1% of available

FPGA cost for 10 trees, 8 depth

Latency 21 clock ticks 65.625 ns

Look up tables 2556 out of 1182240 0.2% of available
Flip flops 2299 out of 2 364 480 0.1% of available
Block RAM 5 out of 4320 0.1% of available

Common values for the above configurations

. . Interval 1 clock tick 3.125ns
S kl p th IS Block RAM 0 out of 4320 If not listed above
- Ultra RAM 0 out of 960 Same for all trees and all depth
SI |d e Digital signal processors 0 out of 6840 Same for all trees and all depth
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timal physics results and ultracfficient FPGA resource utilization. Problems in high energy physics
of proton collisions at the Large Hadron Collider (LHC) are considered. Estimation of missing
transverse momentum (™) at the first level trigger system at the High Luminosity LHC (HL-LHC)
experiments, with a simplified detector modeled by Delphes, is used to benchmark and characterize
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—————— —— We present an interpretable implementation of the autoencoding algorithm,
Check for updates used as an anomaly detector, built with a forest of deep decision trees on
FPGA, field programmable gate arrays. Scenarios at the Large Hadron Collider

at CERN are considered, for which the autoencoder is trained using known

physical processes of the Standard Model. The design is then deployed in real
time trigger systems for anomaly detection of unknown physical processes,
such as the detection of rare exotic decays of the Higgs boson. The inference is
made with a latency value of 30 ns at percent-level resource usage using the
Xilinx Virtex UltraScale+ VU9P FPGA. Our method offers anomaly detection at
low latency values for edge Al users with resource constraints.

Unsupervised artificial intelligence (Al algorithms enable signal
agnostic searches beyond the Standard Model (BSM) physics at the
Large Hadron Collider (LHC) at CERN'. The LHC is the highest ene
proton and heavy ion collider that is designed to discover the Hig
boson® and study its properties**as well as to probe the unknown and
undiscovered BSM physics (see, e.g.” ). Due to the lack of signs of
BSM in the collected data despite the plethora of searches conducted
at the LHC, dedicated studies look for rare BSM events tha ven
more difficult to parse among the mountain of ordinary Standard
Model processes” . An active area of Al research in high energy phy
sics is in using autoencoders for anomaly detection, much of which
provides methods to find rare and unanticipated BSM physics. Much of
the existing literature, mostly using neural network-based approaches,
focuses on identifying BSM physics in already collected data'* ™. Such
ideas have started to produce experimental results on the analysis of
data collected at the LHC™ ™. A related but separate endeavor, which is
the subject of this paper, is enabling the identification of rar
anomalous data on the real-time trigger path for more deta
investigation offline,

‘The LHC offers an environment with an abundance of data ata 40
MHz collision rate, corresponding to the 25 ns time period between
successive collisions. The real-time trigger path of the ATLAS and CMS
experiments’™”, e.g., processes data using custom electronics using
field programmable gate arrays (FPGA) followed by software trigger

and

algorithms executed on a computing farm. The first-level FPGA portion
of the trigger system accepts between 100 kHz to 1 MHz of collisions,
discarding the remaining=99% of the collisions. Therefore, it is
essential to discovery that the FPGA-based trigger system is capable of
triggering potential BSM events. A previous study aimed at LHC data
has shown that an anomaly detector based on neural networks can be
implemented on FPGA with latency values between 80 to 1480 s,
depending on the design

In this paper, we present an interpretable implementation of an
autoencoder using deep decision trees that make inferences in 30 s,
As discussed previously™”, decision tree designs depend only on
threshold comparisons resulting in fast and efficient FPGA imple
gital signal processors. We train
the autoencoder on known Standard Model (SM) processes to help
trigger the rare events that may include BSM.

In scenarios for which a specific BSM model is targeted and its
dynamics are known, dedicated supervised training against the SM
sample, ie., BSMvs-SM classification, would likely outperform an
unsupervised approach of SM-only training. The physics scenarios
considered in this paper are examples to demonstrate that our auto:
encoder is able to trigger on BSM scenarios as anomalies without this
prior knowledge of the BSM specifics. Nevertheless, we consider a
benchmark where our autoencoder outperforms the existing con
ventional cut-based algorithms,

mentation with minimal reliance on
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Abstract
‘We present a generic parallel impl, of the decision tree-based machine learning (ML)
method in hardware description language (HDL) on field programmable gate arrays (FPGA).
A regression problem in high energy physics at the Large Hadron Collider is considered: the
of the itude of missing using boosted decision trees
(BDT). A forest of twenty decision trees each with a maximum depth of 10 using eight input
variables of 16-bit precision is executed with a latency of about 10 ns using O(0.1%) resources
on Xilinx UltraScale+ VU9P—approximately ten times faster and five times smaller compared
to similar designs using high level synthesis (HLS)—without the use of digital signal processors
(DSP) while eliminating the use of block RAM (BRAM). We also demonstrate a potential
application in the estimation of muon momentum for ATLAS RPC at HL-LHC.
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Paper 4: Hardware trees

Summary
e Python to write VHDL

Table 1: FPGA results and comparison with Refs. [7, 8, 11]. All results in the table uses the same FPGA
model Xilinx Ultrascale+ VU9P (vu9p-figb2104-2L.-e) with the following available resources 1.2 M LUT,
2.4M FF, 6.8k DSP, and 4.3 k BRAM. Effective depth d is defined as so that 29 = Npin/Niee-

Goal 5 classif’n 2 classif’n EJ"™ regression EF"™ regression...................
Reference [11] [7] [8] .o Thispaper..........ccooviiine...
Setup
Design VHDL HLS HLS HLS VHDL VHDL VIDL  VHDL
Sum strategy - - - - pipeline combin. combin. pipeline
Parallelize - cutwise  pathwise pathwise pathwise pathwise pathwise pathwise
Clock (MHz) 250 320 320 320 320 320 200 320
Bit precision fixeds intg intig intyg intyg intyg intig intig
Nyar 16 4 8 8 8 8 8 8
Niree 100 100 40 10 40 10 20 100
Max. depth D 4 4 6 8 6 8 10 12
Nbin - - 1.7k 1.4k 1.7k 1.4k 29k 15.7k
Effectivedepthd - - 54 7.2 54 7.2 7.2 7.3
Notable identical identical slower  larger
clock forest
Results
LUT 96k 1k 6.4k 75k 5.1k 10k 155k 38k
FF 43k 0.1k 35k 24k 1.6k 4.7k 6.6k 19.4k
DSP 0 2 0 0 0 0 0 0
BRAM 0 5.5 0 10 0 0 0 0
URAM - 0 0 0 0 0 0 0
Latency (ns) 52ns 9.375ns  38ns 119ns  25ns 19ns 10ns 28 ns
" (tick) 13 3 12 38 8 6 2 9
q | Interval (tick) 1 1 1 1 1 1 1 1
e S u tS Notable benchmark in abstract

e 5x  smaller

e 10x faster
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R. Ospanov, C. Feng, W. Dong, W. Feng, and S. Yang, Development of FPGA-based neural
o I\/l O C k— u p AT I_ AS R P C fo r P h aS e - 2 network regression models for the ATLAS Phase-II barrel muon trigger upgrade, Eur. Phys. J.

Web of Conf. 251, 04031 (2021).
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MNIST example shows capability

® [nput space

/84 variables of 8-bits = 6272 bits
e | atent space 300X
1 variable of 20-bit = 20 bits
e Compression = 314x
® Physics compression
Looking for collaborators
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Representative coordinates of a bin is the median value of the o o :3"05 ’

training sample in the bin

Latent space data is the bin number

e Train on the fly? Sample 1d histograms

Looking for collaborators




RegiOnaI data tx? (JINST in preparation) Ll lnleig

Regional
compression

Block diagram

Key question:

How to achieve
dynamic compression

transmit latent data ﬁ /
[ ] :

|| |

calorimeter
detector

iy \

autoencoder design Co OleCO/h streaming
as compressor & local " Ssso 'O’@ss readout
anomaly sensor ” Or
On-detector electronics, Data Data Off-detector electronics,
e.g., ASIC Transmitter Receiver e.g., FPGA

Wo

Reconstr'n

Processor

Bin in-|-_1 OUtT_1 =
Engine.4 - - LUT,
Input Encoder Data Latent Data Decoder Decoded Merge to x
data packing data  unpacking data

Modified Deep Decision Tree Engine
(DDTE) is split up into two parts

A



PrOtOtype StUdy with Prof. B. Carlson

Westmont College

e | ook at jets at LHC pileup=200, sum energy in 4 rings around seed

One simulated event #8, <u>=50  Tower E; representation Zoom-in highest-¢ jet, E = 63 GeV  Ring definition total E, per ring (GeV)
Delphes ATLAS 0.1 x 0.1 towers Truth et center
O Reconstructed jets AR =0.4 < J < 14
O Truth jets AR =0.4 20t -0.4 -0.4 12
- 20/-\ —~~ M *
15 - 6
183 3 .. |-0.6 0.6
158 810 :
1207 uf 5 e, {08 0.8
éo ! \‘\1 :
6 9 _1] 4]
4 1 , 1
e : . (2) Reco jet cente outside =| 0.5
432101234 12— 12—
- " 1.4 16 1.8 2 2.2 N 2.4 14 16 1.8 2 2.2 N 2.4

e Train DT autoencoder on pileup jets
e Hard scatter |jets are anomalous wrt pileup
e Compression would depend on anomaly
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More Info

e Relevant papers from us
e \Where to find code, tutorials




Python-based code Hong

Pittsburgh

@ (] & pittHongGroup / fwX - GitLab X + v

C O https://gitlab.com/PittHong 50% 9.7 Yy 9y =

‘ \ | | b | | .t
@ WhyGitlab Pricing  Explore Signin | Get free trial

e gitlab.com/PittHongGroup/fwX iy T

Project _
I_X fwX x fWX e Yr Star | 0 :
arallel cuts aper 1 t Ve > et ntorma
¥ master v fwX History Find file Project information
B Plan >
<> 2 ‘dev-rajat’ into * ' (oo
. /> Code > Ples Mergg branch 'dev-rajat' into 'master’ 58c21dco | [ o 29 Commits
<>” Tae Min Hong authored 1 day ago
S a re d b e a I | re u e St & ey ' ¥ 3Branches
| l I I I @ Operate > & 1Tag
Name Last commit Last update
G Monitor > & 1Release
Eadoc first commit 3 years ago
J Analyze >
[ README
3 examples removed small error 1day ago
[¥) CHANGELOG
B3 fwXmachina udpate 1week ago
Created
Eaimages update stuff 3 years ago reatedon
May 11, 2021
autoencoder paper
[ CHANGELOG update stuff 3 years ago
hardware tree paper 4
1+ README.md Update README.md 3 years ago
2 fwX.py udpate 1 week ago
2 setup.py debug setup 5 months ago
[® README.md

Licensing

e \Will share for “Non-Commercial,

X

Machina
. —
Educational and Research Purposes”

« Doxygen is available at https://fwx.pitt.edu/

X
Machina ! Ultrafast

Optimization

e For commercial use, contact Univ. of
Pittsburgh Innovation Institute

e See EULA for details

0 \m | (3N oo [ Trams L Guson
Input /A ] Vs Cust
data scikitiearn (L':!\lJeTncy. Ir:;/ | ’,‘,‘_';’;';,‘f,—'(r.#n’ﬂ."e
P \LuT. ) E
~ ~— ~
#Dependencies

Vivado HLS Download and Installation

Navigate to https://www.xilinx.com/support/download.html

Click the icon of the person in the top right and create an account

Navigate back to the URL above

Select the desired version on the left. Make sure to select a version

that supports your FPGA part number (most versions support all

devices)

. Scroll down a little and click on the name of the installation method.
For example, Windows users will click the *.exe one

. Once that is downloaded, open up the install wizard and progress
through the installation. Make sure to select "Vivado" and "Vivado
Design Edition"

. Once it is done installing, open Vivado HLS to verify it is working

»wnNpR

o

Skip this

o

slide

~



http://gitlab.com/PittHongGroup/fwX

Git structure Hong @

Pittsburgh

Same structure for all methods
e gitlab.com/PittHongGroup/fwX
parallel cuts (paper 1) - tutorial today

e Avallable by request config file
parallel paths  (paper 2)

e Xconfig

creates model configuration

tutorial - part 1

autoencoder  (paper 3)

hardware tree  (paper 4)

O ® &) fwXmachina - master - PittHong' X +

« > C O 8 https://gitlab.com/PittHonc l e \/lvado

synthesize & testbench

u

¥ master v fwX / fwXmachina bItStream tutorlal - part 3
:,gg,: fix deprecated method np.product and np.NINF (gone ywith 2.0)
\'%?'t Joerg Stelzer authored 4 hours ago
Name Last co mnyi

. . 3 Xconfig fix deprecated method np.product and np.N

Sk|p this testbench

B3 Xfirmware pd ff

v update stu
S I I d e Bastyle update stuff



http://gitlab.com/PittHongGroup/fwX

¢« C O 8 &2 https://www.fwx.pittedu 50% Ty Y N

"
|
University of : 2
ore Iin1o Hong
Pittsburgh
FWX
Machina
T —
tart pag e Welcome!
o fwXmachina example: Anomaly
Information regarding the fwX project will be available on this page. This project is developed by members of the Hong Group in the Department of detection, Mendeley Data, doi: ° Python: Aval!ablfz upon request
Physics and Astronomy and collaborators. 10.17632/y698s5kscs.1 o IP testbench: Xilinx inputs for nanosecond anomaly
X (2023-04-11). This sample is detection with decision trees, http://d-
used in v1 of the paper draft scholarship.pitt.edu/id/eprint/44431 (2023-04-23). This
. WX | e l I Anomaly detection with end-to- [arXiv:2304.03836v1] testbench is used in v1 of the paper draft
[ n What is fwX 3 | end decision tree-based o fwXmachina example: Anomaly [arXiv:2304.03836v1]
] autoencoder in HLS detection for two photons and o IP testbench: Xilinx inputs for nanosecond anomaly
« Its full name is "firmware ex machina," a play of the phrase in Latin / Greek deus ex machina / 8¢ £k pnaviic. Since it's a mouthful to say, we two jets, Mendeley Data, doi: detection with decision trees for two photons and two
refer to it as fwX. 10.17632/44t976dyrj.1 jets, http://d-scholarship.pitt.edu/id/eprint/45784
« Itis a software package to design nanosecond implementation of machine learning / artificial intelligence algorithms on FPGA for use in high (2024-02-05). This sarnple s (2024-02-01). This testbench is used in the final version
. used in the final version of the of the paper.
energy physics.
paper.
4 | Application in ATLAS Upgrade o- o-

Some figures
Talks / Posters

« Nature Communications paper

# | Date Type: Title Venue / Link Speaker
. O e # | Figure Caption
| I I l 1| 2021-05-24 Talk: Comparisons to hls4ml's boosted decision tree | Phenomenology Symposium, Pheno 2021, T.M. Hong

lllustrative example of %coder as two visual representations of results indico
the same decision tree. Deep decision tree (left) rendered as
e s dat " Dot T G OTE) = e araotDocon P (705" the decision tree grid (center) and implemented by the parallel 2 | 2021-06-06 Poster: Nanosecond machine learning with BDT for | Virtual HEP conference on Run4@LHC, B.T. Carlson
. " decision paths (right). Two-depth deep decision tree (DDT) is high energy physics Offshell 2021, indico
127 the encoder (step 1) shown as a conventional binary split
| | I S O a e r S J— ® (2] diagram; th_e latent spacev is the bin r_wgmber (step 2); the latent 3 2021-07-13 Tfalk: Nanosecond machine learning with BDT for Diwsifnn of Particles and Fields (DPF) in the B.T Carlson
S1 iyt space data is decoded using the decision tree grid (DTG) (step high energy physics American Physical Society (APS), indico
& iS4 3); and the simultaneous encoding and decoding with xcoder
" - inar: Invisi I
=l ¥ — (star-coder) architecture (right) represented by parallel decision 4 | 2021-09-28 Seminar: Invisible Higgs decays & trigger challenges University of Geneva, Switzerland .M. Hong
Y =@ Phr 5208 paths (PDP) of Ref. [79]. The DTG is the visualization as a grid of atthe LHC

. - % o R e partitions in V-dimensional space. In this example, the input x =
I I I S O a S (55, 70) yields the output “x = (27, 25) without needing to 18th Int'l Conf. on Accelerator and Large
5 | 2021-10-18 | Talk: Presentation of fwX BDT S.T. Roche

explicitly produce the latent layer. Experimental Physics Control Systems,
ICALEPCS 2021, indico

Demonstration of decision tree-based autoencoder and a

demonstration of data transmission / anomaly detection using Seminar: Machine learning in real-time triggers at Department of Physics, University of
. the MNIST dataset, which is a set of images of handwritten 6 | 2021-10-22 | the LHC: A discussion on Machine learning, Boosted P y ’ T.M. Hong
. i . Tennessee, Knoxville

numbers converted to 28 x 28 pixels, or 784-length input vector decision trees, Real-time trigger, and ML on FPGA
V=784, with N = 8 bits per pixel. The ML training is done on 15k

e = OwsutrrO images of handwritten 0 to 4, but not 5 to 9, on one tree T=1 IEEE Nuclear Science Symposium and

"";m .l at a maximum depth of D = 20. The output is a 784-length 7 | 2021-10-20 | Poster: Presentation of fwX BDT Medical Imaging Conference, 2021 IEEE NSS S.T.Racz
S2 4 \ - # J ‘1 vector with 8 bits per pixel. The data compression- MIC, link

A decompression factor, the ratio of input-output bits to the

.
w  Known v e crantouput  Fob ‘ i . P = . . p . ; g .
| I I I ks tO te St b e r ] ( : ' ] e S e Known gt e p——— " latent space dimensions, V- N/(T - D) = 784 - 8/(1 - 20), is about 8 | 20211208 Talk: Comparisons of fwX's BDT to hls4ml's neural PIKIMO 11, indico M. Hong
300. The figure shows two input-output pairs as examples. The network results

output of 4 resembles 4 while the output of 6 is garbled. The

former yields a smaller input-output distance relative to the 9 | 2023-05-12 Talk: Decision trge autoencoder anomaly detection | Phenomenology Symposium, Pheno 2023, ST. Roche
latter case. The input data shown here are not part of the on FPGA at L1 triggers indico
training sample. K i

10 | 2023-09-25 Talk: fwXmachina part 1: Classification with boosted | Fast Machine Learning for Science Workshop .M. Hong

decision trees on FPGA for L1 trigger 2023, indico

</pas2 18/fuHDL/ WX Tutorial/AwX Tutorial xpr 9 E]

u rorial - |C '.
U O | a SRR - ol Defaut Layout
EELIRANN  SIMULATION - Behavioral Simulation - Functional - sim_1 - ae_testbench

PROJECT MANAGER
© Serungs

Untitied 1

. HEP Edge ML School 9/24/24 [l e
Slides

Run Simulation

indico.cern.ch/event/1405026/contributions/6103378/

Videos on synthesizing & test bench

¥4 Generate Bitstre:

indico.cern.ch/event/1405026/contributions/6103386/
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Conclusion

Introduction

e Papers

FPGA design

e Decision tree autoencoder

e Parallel decision trees in VHDL

Thoughts on SRO

e [ransparent interpretation

e 30 ns data compression
e 30 ns anomaly detection

¥ We're excited & open to collaboration y
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1.Classification

parallel cuts using HLS

]l'nst PusLisiED by IOP PUBLISHING FOR SissA MEDIALAB

REcEIVED: April 9, 2021
AccepTED: June 29, 2021
PusLIsHED: August 4, 2021

Nanosecond machine learning event classification with
boosted decision trees in FPGA for high energy physics

T.M. Hong," B.T. Carlson, B.R. Eubanks, S.T. Racz, S.T. Roche, J. Stelzer and D.C. Stumpp

Depariment of Physics and Astronomy, University of Pittsburgh,
100 Allen Hall, 3941 O’Hara St., Pittsburgh, PA 15260, U.S.A.

E-mail: tmhong@pitt.edu

AssTrACT: We present a novel implementation of classification using the machine learning/artificial
intelligence method called boosted decision trees (BDT) on field programmable gate arrays (FPGA).
The firmware i ion of binary requiring 100 training trees with a maximum
depth of 4 using four input variables gives a latency value of about 10 ns, independent of the clock
speed from 100 to 320 MHz in our setup. The low timing values are achieved by restructuring the
BDT layout and reconfiguring its parameters. The FPGA resource utilization is also kept low at
a range from 0.01% to 0.2% in our setup. A software package called FwXuacHINA achieves this

implementation. Our intended user is an expert in custom electronics-based trigger systems in high
energy physics experiments or anyone that needs decisions at the lowest latency values for real-time
event classification. Two problems from high energy physics are considered, in the separation of
electrons vs. photons and in the selection of vector boson fusion-produced Higgs bosons vs. the
rejection of the multijet processes.

Keyworps: Digital electronic circuits; Trigger algorithms; Trigger concepts and systems (hardware
and software); Data reduction methods

ARX1v EPRINT: 2104.03408

*Corresponding author.

© 2021 10P Publishing Ltd and Sissa Medialab https://doi.org/10.1088/1748-0221/16/08/P08016

Hong et al.
JINST 16, P08016 (2021

http://doi.org/10.1088/1748-0221/16/08/P08016
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parallel paths using HLS

inst PuBLISHED BY IOP PUBLISHING FOR SissA MEDIALAR

RECEIVED:

ACCEPTED: Aug

PuBLISHED: Seprembe

Nanosecond machine learning regression with deep
boosted decision trees in FPGA for high energy physics

B.T. Carlson,-” Q. Bayer,” T.M. Hong”"* and S.T. Roche”

Physics and Westmont College

1 Barbara, CA 93108, U.S.A

Physics and Astronomy, University of Pittsburgh

3941 O'Hara St., Pittsbu PA 15260, U.S.A

E-mail: tmhong@pitt.edu

AssTrRACT: We present a novel application of the machine learning / artificial intelligence method

called boosted decision trees to estimate physical quantities on field programmable gate arrays
(FPGA). The software package FWXMACHINA features a new architecture called parallel decision

cision trees with arbitrary number of input variables. It also features a

paths that allows for deep d
new optimization scheme to use different numbers of bits for each input variable, which produces op
timal physics results and ultracfficient FPGA resource utilization. Problems in high energy physics

of proton collisions at the Large Hadron Collider (LHC) are considered. Estimation of missing

transverse momentum (™) at the first level trigger system at the High Luminosity LHC (HL-LHC)
experiments, with a simplified detector modeled by Delphes, is used to benchmark and characterize

the firmware performance. The firmware implementation with a maximum depth of up to 10 using

tinput variables of 16-bit precision gives a latency value of O(10) ns, independent of the clock

, and O(0.1)% of the available FPGA resources without using digital signal processors.

Keyworps: Data reduction methods; Digital electronic circuits; Trigge orithms; Trigger con

cepts and systems (hardware and software)

ARX1v EPRINT: 2207.05602

Corresponding author

© 2022 1P Publishing Ltd and Sissa Medialab https://doi.org/10.1088/1748-0221/17/09/P09039

Carlson et al.

JINST 17, PO9039 (2022

http://doi.org/10.1088/1748-0221/17/09/P09039
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3.Autoencoder 4.Hardware trees

in-house training
bypassing latent space

nature communications

Article

Nanosecond anomaly detection with
decision trees and real-time application to

exotic Higgs decays

Received: 23 May 2023

S.T.Roche®'?, Q. Bayer®7 B. T. Carlson® %, W. C. Ouligian?, P. Serhiayenka’,
2

). Stelzer®2 & T. M. Hong ®

Accepted: 9 April 2024

We present an interpretable implementation of the autoencoding algorithm,

Che

Kk for upda

used as an anomaly detector, built with a forest of deep decision trees on

FPGA, field programmable gate arrays. Scenarios at the Large Hadron Collider
at CERN are considered, for which the autoencoder is trained using known

physical processes of the Standard Model. The design is then deployed in real

time trigger systems for anomaly detection of unknown physical processes,
such as the detection of rare exotic decays of the Higgs boson. The inference is
made with a latency value of 30 ns at percent-level resource usage using the
Xilinx Virtex UltraScale+ VU9P FPGA. Our method offers anomaly detection at
low latency values for edge Al users with resource constraints.

Unsupervised artificial intelligence (Al algorithms enable signal
agnostic searches beyond the Standard Model (BSM) physics at the
Large Hadron Collider (LHC) at CERN'. The LHC is the highest energy
proton and heavy ion collider that is designed to discover the Higgs
boson® and study its properties**as well as to probe the unknown and
undiscovered BSM physics (see,
BSM in the collected data despite the
at the LHC, dedicated studies look for rare BSM events
more difficult to parse among the mountain of ordinary Standard
Model processes” . An active area of Al research in high energy phy
sics is in using autoencoders for anomaly detection, much of whict
provides methods to find rare and unanticipated BSM physics. Much of
the existing literature, mostly using
focuses on identifying BSM physics in already collected data'* ™. Suc
ideas have started to produce experimental results on the analysis of
data collected at the LHC™ ™. A related but separate endeavor, which is
the subject of this paper, is enabling the identification of rare and
nomalous data on the real-time trigger path for more detailed
investigation offline

The LHC offer
MHz collision rate, correspor

Due to the lack of signs of

plethora of searches conducted

t are even

neural network-based approaches,

n environment with an abundance of dat:

a40
ing to the 25 ns time period between
path of the ATLAS and CMS
experiments’™”, e.g., processes data using custom electronics using
abl

successive collisions. The real-time trigg

field proj e arrays (FPGA) followed by software trigger

aigorithms executed on a computing farm. The first-level FPGA portion
er system accepts between 100 kHz to 1 MHz of colisions,
the remaining=99% of the collsions. Therefore, it is

essential to discovery that the FPGA-based trigger system is capable of
riggering potential BSM events. A previous study aimed at LHC data

has shown that an anomaly detector based on neural networks can be
implemented on FPGA with latency values between 80 to 1480 ns,
n

we present an interpretable implementation of an
deep decision trees that make inferences in 30 ns.
As discussed previously™””, decision tree designs depend only on
threshold comparisons resulting in fast and efficient FPGA imple
mentation with minimal reliance on dig in
the autoencoder on known Standard Model (SM) processes to help

al signal processors. We tra

trigger the rare events that may include BSM.

In scenarios for which a specific BSM model is targeted and its
dynamics are known, dedicated supervised training against the SM
sample, ie., BSMvs-SM classification, would likely outperform an

f SM-only training. The physics scenarios
re examples to demonstrate that our auto-
hout this

insupervised approach
considered in this pape
encoder is able to trigger on BSM scenarios as anomalie

prior knowledge of the BSM specifics. Nevertheless,
benchmark
ventional cu

here our autoencoder outperforms the existing con

t-based algorithms.

School of Medicine, Saint Louis Univi

Department of Physics and Engineering

hysics and Astronomy, University of Pittsburgh, Pittsburgh, PA, USA

1(2024115:3527

Roche et al.
Nat. Comm. 15 (2024) 3527

https://arxiv.org/abs/2304.03836
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PITT-PACC-2409-v1

Nanosecond hardware regression trees in FPGA at the LHC

P. Serhiayenka®, S. T. Roche*®”, B. T. Carlson®¢“, and T. M. Hong**

“Department of Physics and Astronomy, University of Pittsburgh
bSchool of Medicine, Saint Louis University
“Department of Physics and Engineering, Westmont College

September 20, 2024

Abstract

We present a generic parallel implementation of the decision tree-based machine learning (ML)

method in hardware description language (HDL) on field programmable gate arrays (FPGA)
A regression problem in high energy physics at the Large Hadron Collider is considered: the
estimation of the magnitude of missing transverse momentum using boosted decision trees
(BDT). A forest of twenty decision trees each with a maximum depth of 10 using eight input
variables of 16-bit precision is executed with a latency of about 10 ns using O(0.1%) resources
on Xilinx UltraScale+ VU9P—approximately ten times faster and five times smaller compared
to similar designs using high level synthesis (HLS)—without the use of digital signal processors
(DSP) while eliminating the use of block RAM (BRAM). We also demonstrate a potential
application in the estimation of muon momentum for ATLAS RPC at HL-LHC,

Keywords: Data processing methods, Data reduction methods, Digital electronic circuits, Ti

i
<]

ger concepts and systems (hardware and software)

algorithms, and Tri

Corresponding author, tmhong @pitt.edu

Serhiayenka et al.
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[2409.20506]



https://arxiv.org/abs/2409.20506
http://doi.org/10.1088/1748-0221/16/08/P08016
http://doi.org/10.1088/1748-0221/17/09/P09039
https://arxiv.org/abs/2304.03836

paper 1: Parallelize cuts M b

2d plane: x, vs. Xy,

Root node

Decision
Depth ii
Root node
Parallelize
cuts

Skip this

slide Key idea: Data on each axis can be binned in parallel |




Paper 1: Pre-merge trees HHHeng

Put this in fw
Flattened tree T, Flattened tree g _

with boost weight w, with boost weight wg Merged tree Top

Wq Og01 + Wp Op1

Wq Og11 + W Op11

C o
B Wq Og01 + Wg Opoo
Caii o ! 5 Cai Wq Og11 + Wg Og10
OO ! B10

| Wa Oa00 + W OB10
Wa Oa10 + Wg Op10

Xg Xg

Cg,i Cpi  Cai

Skip this Key idea:

slide Forest can be merged prior to firmware implementation A




TM Hong

Paper 1: Block diagram

Evaluation Processor

Actual layout depends on ML training result Score
Processor
i Yl Bin Engine NP Op - "
Input variables |:{> 1 o e mo ot ° |:{> Output score
us tap
X |Bin Engine | b4 LUT, Transfgrm
for x4 "™ bin indices — Function,
output score e.g., tanh or
forv=0..V-1 passthru
variables Oy = scoregfin] £ = flout)
out" = flou
out'
Xy.1 | Bin Engine | by i al
for x4 V-1
— Sum
fort=0..T-1 trees out' = 5, in’,
Xo | Bin Engine | Po in out Or. i
for X, 0 ied iE
X1 | Bin Engine | b4 in LUT 14
for x4 1 bin indices — .
output score LUT / BRAM
forv=0.. V-1 - e
variables Ot.1 = scorey4[in] Array of
scoreg
Xy.1 |Bin Engine | by4 |, scorer.
for x.4 V-1
Parallel Look up the Combine
Sklp thIS process per OUtpUt Score the scores
variable given per of the trees

slide

(next slide)

decision tree

in the forest




Paper 1: Look up bin engine ™ Hong (333

Look Up Bin Engine (LUBE)
Input variable E> E> Bin index

Actual layout depends on ML training result

13 = 1101
X

LUT
active input array
— output index

7N

ing.2

\V4

LUT / BRAM e ): 0 ing.1
a 0100
B 1100 [0,0,1,0] — 2

Numerical Binning Example Parameter Max Value
x= 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 N = 4, input bits

3=B-1

0 1 B =4, max bin

0 Comparator input values

 Search for the bin where the data point lives
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Paper 1: Bit shifting

Input variable

Skip this

slide

X

Bit Shift Bin Engine (BSBE)

- -~
Actual layout depends on ML training result
13 = 1101 a2 o tandg™ o, 2
x >> N-1 = ] 4 Ng out —b
0001 = 1 L////> Tl
|| % >> N-2 B e 2 ling
0011 =3 : LUT
active input array
: — output index
xssN-L | ] 1ll= -t 1 ling_;
0110=6 1.~
T ing_1
[0,0,1,0] — 2
(LT /BRAM )
Not
explicitly used, 1T
may be used Comparators
indirectly as above
‘ B =3 andg_2
3 526 1
6
a=1 _T1]
1 B=3 _1 land
3 5=7 _0]
6

Numerical Binning Example
x= 0 1 2 3 4 5 6 7

8 9 10 11 12 13 14 15

a= 0 1

_ Ty [

b= S 2 i
5=1 0 1 1 1 2 1 3 4 1 5 6 |7=241
b= 0 1 2 |3=B

Parameter Max Value
N =4, input bits

£=0, layer no.

£ =2, layer no.

{=3=L-1, max layer

B =4, max bin

TM Hong

Bin index




Paper 1: Scaling M Hong
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Paper 1: VS. hisdml family TM Hong

Unit norm.
Unit norm.
©
o

. ¢
r Machina
r e

01

1 L 1 c L L 1 1
0 5 10 15 20 25 0 02 04 06 08 1

o S etu p . E,, energy in the 0" layer (GeV) . f, =,/ E, ., fraction wrt all layers
/ g £
Physics 4 variables for e vs. y1 >
FwWX paper 1 100 trees, 4 deep A r”
his4ml BDT ~ ”identical config for BDT T e o,
his4mI NN Out-of-the-box config S & B
- fwX paper 1
vs. his4mlI NN Comparable2 $eE
vs. hlsdml BDT Same (since identical config) 1-.@. R B R
Resource < 1% for all methods " " sonaecency )
Latency FWX’s parallel + no
. paper 1 NN
clocked operations
# bits (8> (10,5 (10,5
LUT 0.06% 0.1% 0.3%
Flip Flops 0.01% 0.01% 0.1%
BRAM 0.1% 0.2% 0
Skip this 1 Nachman et al., https://data.mendeley.com/ DSP 0.03% 0.02% 0

datasets/kp3myh3v89/1 -

' Latenc 10 ns 25 ns 47 ns
slide 2 Hong, PIKIMO 11, https://indico.cern.ch/ y . : :
event/1091676/contributions/4639362/ Interval 1 clock tick | 1 clock tick | 1 clock tick



http://dx.doi.org/10.17632/pvn3xc3wy5.1
http://dx.doi.org/10.17632/pvn3xc3wy5.1
http://dx.doi.org/10.17632/pvn3xc3wy5.1
https://indico.cern.ch/event/1091676/contributions/4639362/
https://indico.cern.ch/event/1091676/contributions/4639362/
https://indico.cern.ch/event/1091676/contributions/4639362/

Test bench setup TM Hong

_ Setup to validate against software simulation _
| |
P h I | O S O h Repeat HLS co-simulation
for 100k test vectors
for 200 config / cores fwX

ulated core

e Every training ships
with test vectors /el o I

® Every deSign Creates ﬁN,zj(I.BDTSW bit integer
Its own testbench

For each
config,

Asw, 1

—>

SW simulation

Asw, 100k

Note: floating pt x SW simulation

o Pe rfo r m a n C e Va | u e S The floating point simulation is not part of the

test bench, but is shown here for completeness.

fwX BDT sw floating pt User input is

frO m I m p | e m e n tat I O n y The blue boxes are also part of Nanosecond floating pt cuts for Nanosec.

Optimization that appears in figure 1. Optimization,

not estimate
Appga = For each
VL
Ofpga — |y setup,
ocosim Afp ga
_ Setup to verify against physical FPGA _
Repeat HLS co-simulation
for 2 FPGA choices simulated
for 3 clock speeds fwX L timing
for a few test vectors ulated core 4
. /it integer x R, =
WX Vivado RTL L | It For each
—>» HLS actual timing[—> setup,
C code C synthesis S ) >\ /sim. timing | Ry
i3 Physical FPGA
Vivado 2
Synthesis fwX IP core
&
Implementation |
actual EM}# integer x
estimated resources »| Rr= For each
resources | actual / est. —> setup,
7| resources R,




Estimates vs. actual

Compared

TM Hong

e Estimated usage / latency vs. actual usage / latency

Table 12: FPGA cost verification against physical FPGA. Comparison of the FPGA cost using the bitstream
on the FPGA (actual), simulated timing using co-simulation and estimated resources using Vivado HLS
(estimated). The actual-to-estimated ratios are given as R. Two FPGA choices and three clock speeds
are considered; the 320 MHz group of columns represent the benchmark clock. For all other configurable
parameters, see table 1. The timing values are reported in units of clock ticks. The Xilinx Vivado version
used for the actual and estimated columns are noted. For the ratios, “1” signifies no difference.

Parameter

Benchmark FPGA

Smaller FPGA

FPGA setup
Family
Model
Speed
Period
Vivado

Xilinx Virtex Ultrascale+
xcvu9p-fliga2104-2L-e

320MHz ..........
3.125ns...........
2019.2 2019.2

2018.2 2018.2

oooooooooooooooooooo

2018.2 2018.2

Xilinx Artix-7.....
xc7z020-clg400-1 .
100MHz .........

2019.1 2019.2

FPGA cost
Latency
Interval
LUT
FF
BRAM
URAM
DSP

actual /estim.=R

3 /3 =1
1 /1 =1
717 /1903 =0.4
147 /138 =1.1
5.5 /8 =0.7
0 /0 =1
2 /0 =NA

actual / estim. =R

2 /2 =1
1 /1 =1
717 /4015 =0.2
147 /113 =1.3
5.6 /15 =04
0 /0 =1
2 /2 =1

actual / estim. = R

1 /1 =1
1 /1 =1
717 /4007 =0.2
147 /2 =73.
5.5 /15 =04
0 /0 =1
2 /2 =1

actual / estim. = R

4 /4 =/
1 /1 =1
482 /3572 =0.1
245 /362 =0.7
75 /15 =0.5
NA /NA =NA
2 /2 =M

e Not always 1




FW testbench w/ IP available

http://d-scholarship.pitt.edu/45784/

Autoencoder Firmware Testbench Tutorial

Please download Vivado 2019.2 at the following link, if you do not currently have it:
https://www.xilinx.com/support/download/index.html/content/xilinx/en/downloadNav/vivado-design-

tools/archive.html

Before Beginning

Before beginning, please make sure that you have (and know the location of) the autoencoder IP
folder, and the VHDL testbench files:

nName vate moariea Iype size
autoencoder8var_ip 2/7 File folder
tb_vhd_files 2/ File folder

Creating New Project in Vivado

Open Vivado 2019.2 and select “create new Project.” On the following pop-up, select “next,” and
you will be prompted to name the project. Name the project as you wish and choose a location to store
it. Keep clicking next until you reach a page that prompts you to select the part/ board. For this tutorial,
we will be using the Virtex UltraScale+ VCU118 board. After you have selected your part or board,
keeping clicking “next” until you have reached the end of the setup page.

4 New Project x
Default Part
Choose a default Xilinx part or board for your project, s
Parts Boards
Reset All Filters Update Board Repositories
Vendor: | All v | Name: Al v BoardRev: Latest v
Search: | O-veu118 v | (1 match)
Display Name: Preview  Vendor File Version ~ Part
Virtex UltraScale+ VCU118 Evaluation Platform ‘ W linccom 23 xcvu9p-figa2104-2L-e
< >

TM Hong

Screenshots in the document

@ @ b > Q + & » C ¢ Default View v
0
ae_testbench_0 oo 0
0
recoCoonneks_070| 120
s——{Cx ATL
detault_syscik1_300 [
ok wiz 0
|+ e i o
resel [—p—] reset
G P i
proc_sys_reset_0
wlowest_syee_ck me_reset
ot rosat_in bea_stnut reseq00)
aux_resmt
b_cs0ug_sys_rst
dem locked
™R
Flow Navigator 3 BLOCK DESIGN - design 1
Add Sources Bos ] expectedDis Diagram
Languege Terspietes 2 @ axEoa + Detault ¥ v %

1P Coislog

¥ IPINTEGRATOR

Create Block Design

Slock Design il
& Bioxck Design
Block Pin Properties oogx 0 s
o )
¥ SIMULATION Frobed - °
. A b0 Doy ace
Run Smulation b
0 input - e
0 T 0 s
v RILaNALYSIS Net 20 restoench 0 change_event o2y reset
* sarated Design b = oot syre Py
Goneral | Fropertios  Intarface < R
Tel Console ports ign R o
Q = 3
0
Ly | laet bd cal
v IMPLEMENTATION ' ! B
> Run implementation t laet b col
~ PROGRAM AND DESUG
¥ Ganerate Bistream < 5
Waveform - hw_ila_1 ?
Q + = & > » B B @ Q@ I o | = 2 4 wl &

ILA Status: Idle



http://d-scholarship.pitt.edu/45784/

Autoencoder intro TM Hong

-xample: handwritten numbers

¢ [each It about the number 4

784 variables (8-bit) Corresponding data set
. age  Pixel | = Pixel 2 s I;)g(gl F;)S(jrl
500k

Detalls

e Fach pixel in the data set are unrelated to each other




Logic flow

¢ | eft-to-right data flow (see right)
e Realized that we can bypass the latent space!

e Encoding = Decoding

X ) .
Distance
Processor
Data X %0 sum | —  Data
D ‘I: . | in Deep Decision Tree Engine,
e a S anomaly detector version _
l DDTE-ad, A= 2y

e Parallel computing

® [REE ENGINES eval. in parallel

DDTE-ad, |

|14 Distance
—1 Fn., Ao

e All combinatoric logic, so no clocking
between steps = fast

fork =0 .. K-1 trees

e Mostly comparisons = fast . E——
e No multiplication = fast A o

e Technical info in backup & t t t

Input data Encoder Encoded data Decoder Intermediate Metric
[2304.03836] output
: Shown conceptually as
actual encode-decode
occur simultaneously.

y.


https://arxiv.org/abs/2304.03836

N

Design v2: Parallelize terminal bins
Go deeper from 4 — 8

° | m p rove FWXV 1 Standard FWX design

decision tree v2

Challenge Does not scale well w/
tree depth & # variables

Cut redundancy 2P

FWXVv2 a

Key design Evaluate decision paths

Benefit Softer scaling vs 2P
%8000 - ] ;35'
% XMachina _: 0.6 g Destination bin Decision path
- — ] §<)
2 6000 N,. = 0.5 o not(q;) and not(q;)
—_ - ] ] o .
O 104 i
g 4000~ =+ 4 ] (% D10 not(q;) and g;; and not(q;;;)
- 5 ] 03 7)) b11
- 10 ] :
20 .
2000 1023
I —0.1
O i = = i ) ) | .
0 2 4 6 8 10 Xg

D, max. tree depth

Carlson et al., JINST 17, P0O9039 (2022)



http://doi.org/10.1088/1748-0221/17/09/P09039

Machine learning

Focus on the most popular use cases in HEP

Supervised classification

* Neural networks & Boosted decision trees
« Others (SVM, kNN, Matrix element, etc.)

Structural similarities: NN & BDT

- Step function boundary
* Fuzzy boundary

Use cases
* Regression
 Classification S vs. B
- Anomaly detection B vs. not-B

Il discuss other approaches (estimation, unsupervised) after intro ’




Neural networks basics

From Bruce Denby, Tutorial on Neural Network Applications in High
Energy Physics: A 1992 Perspective, FERMILAB-CONF-92 / 121-E

Step function for 1d Step function for 2d  Curved step fn? for 2d

Xa y y

P ol 1

o 0
>

()]

5 C\ .
o

@]

£ 0
zZ

O(Xa — X) O(y —1(x))
=0O(y—(mx +Db)) substitute
=0O(c1y+cex+b) multiply by c1 & define co
= O(c1 X1 + C2X2 + b) generalized notation
=0O(c*x+Db) vector notation

ep functions divide samples given a desired true / false positive rates I



fa

fg

X

> X
@(Ccﬂ X1 + Cc12 X2 + ba) e(CB1 X1 + CBZ X2 + bB)

> X
@(Cy1 X1 + Cy2 X2 + by)

fy

fp

> X1 X1

@(Cm X1 + Ca2 X2 + bq) + @(Ccn X1 + Ca2 X2 + bq) +
©(Cp1 X1 + Cp2 X2 + bp) O(Cp1 X1 + Cp2 X2 + bg) +

@(Cy1 X1 + Cy2 X2 + by)

of step functions can approximate the desired contour




O(Ca* X + ba) + O(Ca* X + ba) +
O(cp* X + bg) + O(cp* X + bp) +
@(Cy'x+by) ——lp @(Cy’x+by)—2 —i

subtract 2 threshold

Step function for
2-dim inputs

The contour is converted to the final step function




Activation function

Fuzzy boundary using a function

1-dim input 2-dim inputs Output score
() o
3 O(Xa — Xx) 3
5 5
3 3
S S
Z P
_ « O
0 1

@) 2
o ®(Xa — X; Xmax) 3
5 o
5 5
®) —
£ 3
Z S

P

- X
Xa  Xmax O
0 1

Ivation fn gives users a handle to control true / false positive rates !



Decision tree basics

And how it achieves the same result as NN

Step function for 1d Step function for 2d

Xa X2 C1
@ 1
c
% 1 - —
— Cop
S Co2a
3 0
-
- )
=
> X > X1
O(Xa — X) O(x1 — C1) * CICCENT +

Sl b O RMO (X2 — Cop)
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One decision tree

tree1 depth1

—0.8

sig bkg

_5 |IIII|IIII|IIII|IIII|IIII _1
25 4 -3 2 1 0 1 2 3 4 5

Binary classification




One decision tree -

tree1 depth2

Binary classification



One decision tree

tree1 depth3

! | | | |
o A W N 4 O a4 0N oW A~ o

Binary classification




One decision tree

tree1 depth4

! | | | |
o A W N 4 O a4 0N oW A~ o

Binary classification




One decision tree

tree1 depth8

Draws diagonal



Depth 2

vary trees




Depth 2

coocoo

vary

Lo
A b b L o L v e s oo

O[T T[T [T T[T ITTT T

tree1 depth2

5 — 1

43_ —0.8
32— —0.6
23— —0.4
13_ 0.2




Depth 2

vary
tree2 depth2
5 — —1
‘= s
3 f_ —10.6
o g




Depth 2

vary

tree4 depth2

-
o
e
o

—0.8

0.6




Depth 2

£ D £k & £k S

vary

|

tree8 depth2




Depth 2 _—

vary

|

tree16 depth2

LS S5 5 L © 9 9 o o =

LAALALLAALLALALL




Depth 2 R

vary

l

tree32 depth2

LS S5 5 L © 9 9 o o =
® o = b o> > >

LAALALLAALLALALL
LAALALLAALLALALL




Depth 2

LAALALLAALLALALL
LAALALLAALLALALL
LAALALLAALLALALL
LAALALLAALLALALL

vary

l

tree64 depth2

tree32 depth2

®» o = N MR e @




Depth 2

.YV, 9. Y. Y. ¥, ¥. 7. ¥, V. 7. ¥.¥.¥. ¥
.YV, 9. Y. Y. ¥, ¥. 7. ¥, V. 7. ¥.¥.¥. ¥
.YV, 9. Y. Y. ¥, ¥. 7. ¥, V. 7. ¥.¥.¥. ¥
.YV, 9. Y. Y. ¥, ¥. 7. ¥, V. 7. ¥.¥.¥. ¥
.YV, 9. Y. Y. ¥, ¥. 7. ¥, V. 7. ¥.¥.¥. ¥
.YV, 9. Y. Y. ¥, ¥. 7. ¥, V. 7. ¥.¥.¥. ¥
.YV, 9. Y. Y. ¥, ¥. 7. ¥, V. 7. ¥.¥.¥. ¥
.YV, 9. Y. Y. ¥, ¥. 7. ¥, V. 7. ¥.¥.¥. ¥

vary

|

tree128 depth2

becomes very blurry

tree64 depth2




Put it together on one slide

Tree >

<+— Depth

tree1 depth1

tree2 depth1

tree1 depth2

tree2 depth2

treed depth2

tree8 depth2

tree16 depth2

tree8 depth2

tree1 depthd

tree2 depthd

tree1 depth8

tree2 depthg

tree2 depth16

Sweet spot depends on the physics problem




Forest of decision trees

Fuzzy boundary by averaging step functions
| Neural network 1d Bposted decision tree 1d

7p] N
+— -
(- -
) ()
> >
() ()
Y— Y—
(@) o
—_ —_
() )
0 o)
- -
- >
Z pZd

CD(XOH — X, Xmax1) +
CD(XGZ — X, Xmax2) +

Number of events
Number of events

D(XaN — X; XmaxN)

@ Forest of decision trees provides the gradient




Activation function

Fuzzy boundary using a function

2-dim inputs Projection Output score

NN

Number of events

BDT

Number of events

Different approach, but same result




