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EIC ePIC: overview
The ePIC collaboration currently
consists of almost 500 members from 171 
institutions and is working jointly with 
the DOE EIC Project to realize the ePIC
experiment. 
ePIC experiment will be an ~10-meter 
long cylindrical barrel detector with 
additional instrumentation that extends
to up to 45m in each direction down the 
EIC beamline.

• A 1.7 Tesla superconducting magnet
• High-precision silicon detectors for 

particle tracking 
• Precise calorimeters for measuring

particles electromagnetic energy
• A suite of particle identification (PID) 

detectors
• Dense calorimetric detectors to allow

the measurement of “jets“



ePIC: DAQ System
The data from the Front End Boards (FEBs) will be aggregated into
Readout Boards (RDOs) using bidirectional interfaces.

The RDOs will distribute configuration and control information to the FEBs and read
hit data as well as monitoring information from the FEBs. 
The RDOs will also use a bidirectional optical connection to more powerful FPGA-
based hardware, the Data Aggregation and Manipulation Board (DAM).



ePIC: DAM boards (FELIX)

FELIX FLX-155 board is built around the new Xilinx Versal FPGA/SoC family.
It will support up to 48 serial links running at speeds up to 25Gbps as well as a 100Gb 
ethernet link off the board. 
There is a DDR4 16GB RAM slot available to support buffering and they are equipped
with a PCIe Gen5x16 bus

DAM boards are envisioned to be a variation of the next generation 
FELIX boards, developed for the ATLAS experiment at LHC.



dRICH ➔ RDO and ePIC DAQ (baseline)



dRICH: Analysis of Output Bandwidth

The dRICH DAQ chain in ePIC ➔ the throughput issue

• Sensors DCR: 3-300 kHz 
(increasing with radiation
damage➔with experiment
lifetime).

• Full detector throughput (FE): 
14-1400Gbps

• A reduction is needed to cope
with 30 channels bandwidth
availability

• EIC beams bunch spacing: 10 ns 
➔ bunch crossing rate of 100 
MHz

• For the low interaction cross-
section (DIS) ➔ one interaction 
every ~100 buches ➔
interaction rate of ~1MHz.

• A system tagging the (DIS) 
interacting bunches can solve 
the throughput issue (reducing
to ~1/100 the data throughput)

100GbE x 30



APEIRON: overview
APEIRON is a framework developed to offer hardware and 
software support for the execution of real-time dataflow 
applications on a system composed by interconnected 
FPGAs
● Enabling the mapping the dataflow graph of the 

application on the distributed FPGA system and 
offering runtime support for the execution.

● Allowing users, with no (or little) experience in 
hardware design tools, to develop their applications on 
such distributed FPGA-based platforms:
○ Tasks are implemented in C++ using High Level 

Synthesis tools (Xilinx® Vitis).
○ Lightweight C++ communication API (HAPECOM)

■ Non-blocking send()
■ Blocking receive()

APEIRON enables the scaling of Xilinx® Vitis High Level 
Synthesis applications on multiple FPGA interconnected 
by the INFN communication IP.



APEIRON for smart TDAQ Systems
Abstract Processing Environment for Intelligent Read-Out systems based 
on Neural networks

● Input data streams from several different channels (data sources, 
detectors subsectors) recombined through the processing layers using 
a low-latency, modular and scalable network infrastructure

● More resource-demanding 
NN layers can be 
implemented in subsequent 
processing layers.

● Classification produced by 
the NN in last processing 
layer (e.g. pid) will be input 
for the trigger 
processor/storage online 
data reduction stage for 
triggerless systems.



dRICH Data Reduction Stage on FPGA: 
example deployment



dRICH Data Reduction Stage on FPGA: 
example deployment



dRICH: Data reduction (features)

Online Signal/Noise discrimination using ML:
• Collecting datasets using data available from simulation campaigns
Background:

o e/p with beam pipe gas
o Synchrotron radiation (MC only, it would be useful to have it reconstructed)

• Merged (i.e. the Signal):

• SiPM Noise:

o physics signal + e/p with beam pipe gas background (full)

o Dark current rate (DCR) modelled in the reconstruction stage 
(recon.rb eic-shell method)



dRICH Data reduction: How?
➔ Design and Implementation Workflow

Design targets (efficiency, purity, throughput, latency) and hardware 
constraints (mainly FPGA resource usage) must be taken into account and 
verified at any stage:



dRICH Data reduction: How?
➔ Design and Implementation Workflow

Design targets (efficiency, purity, throughput, latency) and hardware 
constraints (mainly FPGA resource usage) must be taken into account and 
verified at any stage:

• Generation strategy of training and validation data sets.



dRICH Data reduction: How?
➔ Design and Implementation Workflow

Design targets (efficiency, purity, throughput, latency) and hardware 
constraints (mainly FPGA resource usage) must be taken into account and 
verified at any stage:

• TensorFlow/Keras
➔ NN architecture (number and kind of layers) and representation of the input
➔Training strategy (class balancing, batch sizes, optimizer choice, learning rate,...).



dRICH Data reduction: How?
➔ Design and Implementation Workflow

Design targets (efficiency, purity, throughput, latency) and hardware 
constraints (mainly FPGA resource usage) must be taken into account and 
verified at any stage:

• Qkeras ➔ Search iteratively the minimal representation size in bits of weights, 
biases and activations.



dRICH Data reduction: How?
➔ Design and Implementation Workflow

Design targets (efficiency, purity, throughput, latency) and hardware 
constraints (mainly FPGA resource usage) must be taken into account and 
verified at any stage:

• hls4ml ➔ Tuning of REUSE FACTOR config param (low values ➔ low latency, high 
throughput, high resource usage), clock frequency.



dRICH Data reduction: How?
➔ Design and Implementation Workflow

Design targets (efficiency, purity, throughput, latency) and hardware 
constraints (mainly FPGA resource usage) must be taken into account and 
verified at any stage:

• Vivado HLS ➔ co-simulation for verification of performance (experimented very
good agreement with QKeras Model)



dRICH: Data reduction ➔ Subsectors

This is an example of a 
possible division of a dRICH
sector into 5 subsectors
➔ To feed the NN input 
layer, each subsector
readout information should
be converted to a 16x16 grid
➔ 256 inputs



dRICH: Data reduction ➔ Subsectors



dRICH: Data reduction ➔ Grid Definition

o A single grid pixel sums up informations of 
~70 SiPMs

o Edge subsectors pixels contain less
infomations ➔ this feature can be learnt
by the NN 



dRICH Data reduction ➔ Dataset

1. Run dRICH EICrecon algorithms on available FULL root files ourselves, one time with noise
enabled, one time without it
➔ Easy, just use drich-dev/recon.rb with nois configs.
BUT currently only few FULL files are available (29), corresponding to about 7k events. 

2. Use RECO files, more easily available on server (much smaller) but have to add noise ourselves
(current model seems to be just white noise). Still, currently only about 40k events are saved on 
server, summing different months of simulation campaigns

3. Run the entire simulation pipeline ourselves, starting from HEPMC files. 



dRICH Data reduction: 
Input Data (Features Definition) 

➢ Noise OnlyGaussian dark current SiPM noise hits 
distribution

(obtained by modifying directly EICRecon config 
files ➔ default fixed number of 129 noise hits)



dRICH Data reduction: 
Input Data (Features Definition) 

➢ Signal+Background+Noise ➢ Noise Only
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dRICH Data reduction:
Input Data

➢ Signal+Background+Noise ➢ Noise Only



dRICH Data reduction:
Input Grids

➢ Signal+Background+Noise ➢ Noise Only

16x16 Grid ➔ 256 input NN neurons



dRICH Data reduction:
Tensorflow-Keras Model definition 
• To be coherent with the hardware design composition of the proposed

system, we trained 30 (# of subsectors x #number of sectors) concatenated
MLP networks into a single MLP final model



dRICH Data reduction:
Tensorflow-Keras Model definition 

Each MLP DAM output 
(embedding) is
concatenated to the 
others to feed the final
MLP TP model



dRICH Data reduction:
Tensorflow training and evaluation

o We trained (offline) the 30 MLP DAM models concatenated to the single MLP TP 
model by using 100k Signal+Background+Noise and 100k Noise Only events ➔ 200k 
balanced dataset (90% training set, 10% validation set)

o We minimize a typical Binary CrossEntropy loss function in 40 epochs, 
backpropagating the result to all the input models

➔ in this way, trained 30 MLP DAM models result
are uncorrelated, coherently with the target 
design in which each susbector NN is blind wrt to 
the others NN



dRICH Data reduction:
Tensorflow training and evaluation
dRICH Data reduction:
Tensorflow training and evaluation

o We trained (offline) the 30 MLP DAM models concatenated to the single MLP TP 
model by using 100k Signal+Background+Noise and 100k Noise Only events ➔ 200k 
balanced dataset (90% training set, 10% validation set) 

o We minimize a typical Binary CrossEntropy loss function in 40 epochs, 
backpropagating the result to all the input models

➔Overall model accuracy seems to 
scale with the dataset lenght. However, 
with these events, we obtained a ~99,9% 
accurate «noise only» classifier

Purity Accuracy



dRICH Data reduction:
Qkeras quantization step

o Starting from previous models weights, we trained (offline) 30 MLP DAM quantized
models concatenated to a single MLP TP quantized model by using 100k 
Signal+Background+Noise and 100k Noise Only events ➔ 200k balanced dataset
(90% training set, 10% validation set)

➔Through quantization, we defined:
quantized fixed point<16,6> inputs 
quantized fixed point<8,1> weights
quantized fixed point<8,1> biases

Obtaining a
~97.2% accurate «noise only» classifier

Purity Accuracy



dRICH Data reduction:
HLS4ML ➔ (FPGA) HW Synthesis

Unluckily (at this first stage of development), when moving to FPGA by using the 
HLS4ML framework, we were NOT able to produce a MLP DAM model able to cope
with the experiment expected streaming data rate
➔ too many computation resources to unroll (in particular due to the matrix
multiplication between the first two 256 and 128 neurons layers)

➔ To correctly synthetize the model at
200 MHz of operational clock, we used a 
REUSE FACTOR = 64, obtaining an 
instantiation interval lI = 68 clock cycles

➔ Throughput = 2,94 MHz (<< 100 MHz) 



dRICH: Data reduction ➔ Subsectors

Let’s evaluate a 8x8 Grid
as input!



dRICH: Data reduction ➔ Grid Definition

o A single grid pixel sums up informations of 
~250 SiPMs (wrt previous ~70 )

o Edge subsectors pixels contain less
infomations ➔ this feature can be learnt
by the NN (even in this case?)



dRICH Data reduction:
Input Data

➢ Signal+Background+Noise ➢ «Solo» Noise



dRICH Data reduction:
8x8 Grid Test

➢ Signal+Background+Noise ➢ «Solo» Noise

8x8 Grid ➔ 64 input NN neurons



dRICH Data Reduction Stage on FPGA: 
example deployment

FC1 128



dRICH Data Reduction Stage on FPGA: 
example deployment

Out (Signal or Bg) 1-bit

Sigmoid



dRICH Data reduction:
HLS4ML ➔ HW Synthesis 8x8 Grid

➔ To correctly synthetize the model at
200 MHz of operational clock, we used a 
REUSE FACTOR = 1, obtaining an 
instantiation interval lI = 5 clock cycles

➔ Throughput = 40MHz (< 100 MHz) 



dRICH Data reduction:
HLS4ML ➔ HW Synthesis 8x8 Grid

STILL LOW, BUT PROMISING!
(can be improved via modifying
part of HLS4ML code)

➔ The possible overhead in the 
full II pipepline introduced by 
the communication between
DAMs and TP will be considered
in further developments

➔ To correctly synthetize the model at
200 MHz of operational clock, we used a 
REUSE FACTOR = 1, obtaining an 
instantiation interval lI = 5 clock cycles

➔ Throughput = 40MHz (< 100 MHz) 



dRICH Data reduction (8x8 Grid): 
Tensorflow training and evaluation

o We trained (offline) the 30 MLP DAM models concatenated to the single MLP TP 
model by using 100k Signal+Background+Noise and 100k Noise Only events ➔ 200k 
balanced dataset (90% training set, 10% validation set)

o We minimize a typical Binary CrossEntropy loss function in 40 epoch, 
backpropagating the result to all the input models

➔ in this way, trained 30 MLP DAM models result
are uncorrelated, coherently with the target 
design in which each susbector NN is blind wrt to 
the others NN



dRICH Data reduction (8x8 Grid):
Tensorflow training and evaluation

o We trained (offline) the 30 MLP DAM models concatenated to the single MLP TP 
model by using 100k Signal+Background+Noise and 100k Noise Only events ➔ 200k 
balanced dataset (90% training set, 10% validation set) 

o We minimize a typical Binary CrossEntropy loss function in 40 epoch, 
backpropagating the result to all the input models

➔Overall model accuracy seems to scale 
with the dataset lenght. However, with 
these events, we manage to obtain a 
~99,3% accurate «noise only» classifier
(wrt 16x16 grid input ~99,9% accurate one)

Accuracy

Purity Accuracy



dRICH Data reduction (8x8 Grid):
Qkeras quantization step

o Starting from the previous model weights, we trained (offline) 30 MLP DAM 
quantized models concatenated to a single MLP TP quantized model by using 100k 
Signal+Background+Noise and 100k Noise Only events ➔ 200k balanced dataset
(90% training set, 10% validation set)

➔Through quantization, we defined:
quantized fixed point<16,6> inputs 
quantized fixed point<16,6> weights
quantized fixed point<16,6> biases

Obtaining a ~96,9% accurate noise classifier
(wrt 16x16 grid input ~97,2% accurate one)

Purity Accuracy



Conclusions

o We sketched a data reduction system designed based on DAM's FPGAs as a 
risk-mitigation action to the possible problem of an excessive data bandwidth
requirement from the dRICH to Echelon-0 due to SiPM DCR.

o We showed results of the initial activities we made to proof the design concept.
o The design is based on a distributed Dense MLP NN model, that can reach near-

optimal performance in terms of accuracy (using simulated data), and promising
performance in terms of pipeline throughput.

o Next steps:
o Deploy the distributed NN on two FPGAs already available in our lab (Xilinx Alveo 

U200) representing a DAM and the TP, integrating the communication in the 
pipeline and assessing its impact on pipeline throughput (and latency).

o Become familiar with the FELIX board HW and FW (we are receiving a FLX-182 
on loan from JLab) to start devising the integration of our design in its FW. 

o In addition different NN models (CNNs, GNN,…) and data reduction tasks/ideas
(Cherenkov ring detection...) can be explored, taking into account ePIC DAQ 
parameters and without altering its data streaming design ("parasitic" mode)



Thanks for your attention! 

Contacts:
● cristian.rossi@roma1.infn.it
● alessandro.lonardo@roma1.infn.it

mailto:cristian.rossi@roma1.infn.it
mailto:alessandro.lonardo@roma1.infn.it
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dRICH Data reduction: 
Input Data (Features Definition) 

➢ Sig + Bckg + Noise
PHYS SIGNAL + PHYS BACKGROUNG + 

dark current SiPM NOISE hits 
distribution



APEIRON: overview
APEIRON is a framework developed to offer hardware and 
software support for the execution of real-time dataflow 
applications on a system composed by interconnected 
FPGAs
● Enabling the mapping the dataflow graph of the 

application on the distributed FPGA system and 
offering runtime support for the execution.

● Allowing users, with no (or little) experience in 
hardware design tools, to develop their applications on 
such distributed FPGA-based platforms:
○ Tasks are implemented in C++ using High Level 

Synthesis tools (Xilinx® Vitis).
○ Lightweight C++ communication API (HAPECOM)

■ Non-blocking send()
■ Blocking receive()

APEIRON enables the scaling of Xilinx® Vitis High Level 
Synthesis applications on multiple FPGA interconnected 
by the INFN communication IP.



APEIRON for smart TDAQ Systems
Abstract Processing Environment for Intelligent Read-Out systems based 
on Neural networks

● Input data streams from several different channels (data sources, 
detectors/sub-detectors) recombined through the processing layers 
using a low-latency, modular and scalable network infrastructure

● More resource-demanding 
NN layers can be 
implemented in subsequent 
processing layers.

● Classification produced by 
the NN in last processing 
layer (e.g. pid) will be input 
for the trigger 
processor/storage online 
data reduction stage for 
triggerless systems.



APEIRON building blocks:
● INFN Communication IP

INFN is developing the IPs implementing
a direct network that allows low-latency
data transfer between processing tasks deployed 
on the same FPGA (intra-node communication) 
and on different FPGAs (inter-node communication) 

● Host Interface IP: Interface the FPGA 
logic with the host through the system 
bus.

● Routing IP: Routing of intra-node and 
inter-node messages between processing 
tasks on FPGA. •

● Network IP: Network channels and 
Application-dependent I/O 
○ APElink 20 Gbps → 40 Gbps 
○ UDP/IP over 1/10 GbE → 25/40/100 GbE
○ ETH port → Xilinx® 10G/25G High Speed 

Ethernet Subsystem



APEIRON building blocks:
● Software Stack The APEIRON runtime software stack is

built on top of the Xilinx® XRT one adding
three layers to: 

● add the functionalities required to manage 
multiple FPGA execution platforms (e.g., program the 
devices, configure the IPs, start/stop execution, monitor
the status of IPs, ...); 

● reduce the impact of changes in XRT API introduced with 
any new version of Vitis on the APEIRON host-side 
applications; 

● decouple the APEIRON software stack from the specific 
platform, easing the future porting of the framework to 
different platforms/vendors.

Apeirond is a persistent daemon used to manage multiple 
access request from user apps to the board. 
Using the network socket exposed by apeirond modules, the 
supervisor can write commands and read status of the 
different instances of the APEIRON framework running in 
each node, allowing the user to have a complete overview of 
the multiple FPGA execution platform



APEIRON: FPGA bitstream generation
● The HLS task must have a generic interface, 

implementation is free
● A YAML configuration file is used to describe 

the kernels interconnection topology, specifying 
how many input/output channels they have

Adaptation toward/from IntraNode ports of the 
Routing IP is done by the automatically generated 
Aggregator and Dispatcher kernel templates.

void example_task(

[list of optional kernel specific 

parameters], message_stream_t 

message_data_in[N_INPUT_CHANNELS],

message_stream_t 

message_data_out[N_OUTPUT_CHANNELS])



APEIRON performance
(Communication IP: 256 bit datapath @200MHz)

Latency
DDR+sync(ns) BRAM(ns)

Intra-node (localtrip) 533 
213

Inter-node (roundtrip) 1065
768 Bandwidth

DDR+sync(MB/s) BRAM(MB/s)
Intra-node (loopback) 3938 

5967
Inter-node (oneway) 3938



APEIRON applications:
● FIPLib-multiFPGA

FPGA Image Processing Library ⇒ multi-FPGA implementation via APEIRON 

● Developed by ENEA in C++, it employs the 
Vitis HLS flow to construct the library's 
kernels for the execution of image processing 
algorithms.

● FIPLib encompasses nearly 70 functionalities, 
conceived with a streaming behavior

● On a multi-FPGA setup, we were able to split 
the overall image processing by 
implementing a single RGB kernel on each 
node
⇒ increased internal datapath to 32B, 
avoiding FPGA resource limitation



APEIRON applications:
● FIPLib-multiFPGA

FPGA Image Processing Library ⇒ multi-FPGA implementation via APEIRON 

● Implementing FIPLib HLS 
kernels as APEIRON tasks
means changing the 
interface of each of them 
to cope with the standard 
required by the framework 
to compile the entire 
project and to generate 
the bitstream
⇒ use of  HAPECOM C++ 
communication API



APEIRON applications:
● FIPLib-multiFPGA



APEIRON applications:
● RAIDER

Real-time AI-based Data analytics on hEteRogeneous distributed systems

● High throughput online streaming processing on 
multi-FPGA ⇒ number of Cherenkov rings prediction
on the stream of events generated by the RICH detector 
in the CERN NA62 experiment at a rate of about 10 MHz, 
using multiple CNN_kernel replica.

● Lightweight CNN model deployed on Xilinx Alveo U280 
FPGA (limited resource usage)
⇒ receives as input compressed 
representation of the 
original event in form of 
B&W 16x16 image 
(via imagifier kernel)



APEIRON applications:
● RAIDER 

x100

x20



FPGA overview

The basic structure of an FPGA is 
composed of the following elements:
● Look-up table (LUT): This 

element performs logic
operations

● Flip-Flop (FF): This register 
element stores the result of the 
LUT

● Wires: These elements connect 
elements to one another, both 
logic and clock

● Input/Output (I/O) pads: These 
physically available ports get 
signals in and out of the FPGA
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