
Ideas for an Online Data
Reduction System for the ePIC

dRICH Detector
(INFN Sezione di Roma - APE Lab)

Speaker: Cristian Rossi
(cristian.rossi@roma1.infn.it)

[Streaming Readout Workshop SRO-XII – Tokyo (2024)]

EIC ePIC: overview
The ePIC collaboration currently
consists of almost 500 members from 171
institutions and is working jointly with
the DOE EIC Project to realize the ePIC
experiment.
ePIC experiment will be an ~10-meter
long cylindrical barrel detector with
additional instrumentation that extends
to up to 45m in each direction down the
EIC beamline.

• A 1.7 Tesla superconducting magnet
• High-precision silicon detectors for

particle tracking
• Precise calorimeters for measuring

particles electromagnetic energy
• A suite of particle identification (PID)

detectors
• Dense calorimetric detectors to allow

the measurement of “jets“

ePIC: DAQ System
The data from the Front End Boards (FEBs) will be aggregated into
Readout Boards (RDOs) using bidirectional interfaces.

The RDOs will distribute configuration and control information to the FEBs and read
hit data as well as monitoring information from the FEBs.
The RDOs will also use a bidirectional optical connection to more powerful FPGA-
based hardware, the Data Aggregation and Manipulation Board (DAM).

ePIC: DAM boards (FELIX)

FELIX FLX-155 board is built around the new Xilinx Versal FPGA/SoC family.
It will support up to 48 serial links running at speeds up to 25Gbps as well as a 100Gb
ethernet link off the board.
There is a DDR4 16GB RAM slot available to support buffering and they are equipped
with a PCIe Gen5x16 bus

DAM boards are envisioned to be a variation of the next generation
FELIX boards, developed for the ATLAS experiment at LHC.

dRICH ➔ RDO and ePIC DAQ (baseline)

dRICH: Analysis of Output Bandwidth

The dRICH DAQ chain in ePIC ➔ the throughput issue

• Sensors DCR: 3-300 kHz
(increasing with radiation
damage➔with experiment
lifetime).

• Full detector throughput (FE):
14-1400Gbps

• A reduction is needed to cope
with 30 channels bandwidth
availability

• EIC beams bunch spacing: 10 ns
➔ bunch crossing rate of 100
MHz

• For the low interaction cross-
section (DIS) ➔ one interaction
every ~100 buches ➔
interaction rate of ~1MHz.

• A system tagging the (DIS)
interacting bunches can solve
the throughput issue (reducing
to ~1/100 the data throughput)

100GbE x 30

APEIRON: overview
APEIRON is a framework developed to offer hardware and
software support for the execution of real-time dataflow
applications on a system composed by interconnected
FPGAs
● Enabling the mapping the dataflow graph of the

application on the distributed FPGA system and
offering runtime support for the execution.

● Allowing users, with no (or little) experience in
hardware design tools, to develop their applications on
such distributed FPGA-based platforms:
○ Tasks are implemented in C++ using High Level

Synthesis tools (Xilinx® Vitis).
○ Lightweight C++ communication API (HAPECOM)

■ Non-blocking send()
■ Blocking receive()

APEIRON enables the scaling of Xilinx® Vitis High Level
Synthesis applications on multiple FPGA interconnected
by the INFN communication IP.

APEIRON for smart TDAQ Systems
Abstract Processing Environment for Intelligent Read-Out systems based
on Neural networks

● Input data streams from several different channels (data sources,
detectors subsectors) recombined through the processing layers using
a low-latency, modular and scalable network infrastructure

● More resource-demanding
NN layers can be
implemented in subsequent
processing layers.

● Classification produced by
the NN in last processing
layer (e.g. pid) will be input
for the trigger
processor/storage online
data reduction stage for
triggerless systems.

dRICH Data Reduction Stage on FPGA:
example deployment

dRICH Data Reduction Stage on FPGA:
example deployment

dRICH: Data reduction (features)

Online Signal/Noise discrimination using ML:
• Collecting datasets using data available from simulation campaigns
Background:

o e/p with beam pipe gas
o Synchrotron radiation (MC only, it would be useful to have it reconstructed)

• Merged (i.e. the Signal):

• SiPM Noise:

o physics signal + e/p with beam pipe gas background (full)

o Dark current rate (DCR) modelled in the reconstruction stage
(recon.rb eic-shell method)

dRICH Data reduction: How?
➔ Design and Implementation Workflow

Design targets (efficiency, purity, throughput, latency) and hardware
constraints (mainly FPGA resource usage) must be taken into account and
verified at any stage:

dRICH Data reduction: How?
➔ Design and Implementation Workflow

Design targets (efficiency, purity, throughput, latency) and hardware
constraints (mainly FPGA resource usage) must be taken into account and
verified at any stage:

• Generation strategy of training and validation data sets.

dRICH Data reduction: How?
➔ Design and Implementation Workflow

Design targets (efficiency, purity, throughput, latency) and hardware
constraints (mainly FPGA resource usage) must be taken into account and
verified at any stage:

• TensorFlow/Keras
➔ NN architecture (number and kind of layers) and representation of the input
➔Training strategy (class balancing, batch sizes, optimizer choice, learning rate,...).

dRICH Data reduction: How?
➔ Design and Implementation Workflow

Design targets (efficiency, purity, throughput, latency) and hardware
constraints (mainly FPGA resource usage) must be taken into account and
verified at any stage:

• Qkeras ➔ Search iteratively the minimal representation size in bits of weights,
biases and activations.

dRICH Data reduction: How?
➔ Design and Implementation Workflow

Design targets (efficiency, purity, throughput, latency) and hardware
constraints (mainly FPGA resource usage) must be taken into account and
verified at any stage:

• hls4ml ➔ Tuning of REUSE FACTOR config param (low values ➔ low latency, high
throughput, high resource usage), clock frequency.

dRICH Data reduction: How?
➔ Design and Implementation Workflow

Design targets (efficiency, purity, throughput, latency) and hardware
constraints (mainly FPGA resource usage) must be taken into account and
verified at any stage:

• Vivado HLS ➔ co-simulation for verification of performance (experimented very
good agreement with QKeras Model)

dRICH: Data reduction ➔ Subsectors

This is an example of a
possible division of a dRICH
sector into 5 subsectors
➔ To feed the NN input
layer, each subsector
readout information should
be converted to a 16x16 grid
➔ 256 inputs

dRICH: Data reduction ➔ Subsectors

dRICH: Data reduction ➔ Grid Definition

o A single grid pixel sums up informations of
~70 SiPMs

o Edge subsectors pixels contain less
infomations ➔ this feature can be learnt
by the NN

dRICH Data reduction ➔ Dataset

1. Run dRICH EICrecon algorithms on available FULL root files ourselves, one time with noise
enabled, one time without it
➔ Easy, just use drich-dev/recon.rb with nois configs.
BUT currently only few FULL files are available (29), corresponding to about 7k events.

2. Use RECO files, more easily available on server (much smaller) but have to add noise ourselves
(current model seems to be just white noise). Still, currently only about 40k events are saved on
server, summing different months of simulation campaigns

3. Run the entire simulation pipeline ourselves, starting from HEPMC files.

dRICH Data reduction:
Input Data (Features Definition)

➢ Noise OnlyGaussian dark current SiPM noise hits
distribution

(obtained by modifying directly EICRecon config
files ➔ default fixed number of 129 noise hits)

dRICH Data reduction:
Input Data (Features Definition)

➢ Signal+Background+Noise ➢ Noise Only

dRICH Data reduction:
Input Data (Features Definition)

➢ Signal+Background+Noise ➢ Noise Only

dRICH Data reduction:
Input Data

➢ Signal+Background+Noise ➢ Noise Only

dRICH Data reduction:
Input Grids

➢ Signal+Background+Noise ➢ Noise Only

16x16 Grid ➔ 256 input NN neurons

dRICH Data reduction:
Tensorflow-Keras Model definition
• To be coherent with the hardware design composition of the proposed

system, we trained 30 (# of subsectors x #number of sectors) concatenated
MLP networks into a single MLP final model

dRICH Data reduction:
Tensorflow-Keras Model definition

Each MLP DAM output
(embedding) is
concatenated to the
others to feed the final
MLP TP model

dRICH Data reduction:
Tensorflow training and evaluation

o We trained (offline) the 30 MLP DAM models concatenated to the single MLP TP
model by using 100k Signal+Background+Noise and 100k Noise Only events ➔ 200k
balanced dataset (90% training set, 10% validation set)

o We minimize a typical Binary CrossEntropy loss function in 40 epochs,
backpropagating the result to all the input models

➔ in this way, trained 30 MLP DAM models result
are uncorrelated, coherently with the target
design in which each susbector NN is blind wrt to
the others NN

dRICH Data reduction:
Tensorflow training and evaluation
dRICH Data reduction:
Tensorflow training and evaluation

o We trained (offline) the 30 MLP DAM models concatenated to the single MLP TP
model by using 100k Signal+Background+Noise and 100k Noise Only events ➔ 200k
balanced dataset (90% training set, 10% validation set)

o We minimize a typical Binary CrossEntropy loss function in 40 epochs,
backpropagating the result to all the input models

➔Overall model accuracy seems to
scale with the dataset lenght. However,
with these events, we obtained a ~99,9%
accurate «noise only» classifier

Purity Accuracy

dRICH Data reduction:
Qkeras quantization step

o Starting from previous models weights, we trained (offline) 30 MLP DAM quantized
models concatenated to a single MLP TP quantized model by using 100k
Signal+Background+Noise and 100k Noise Only events ➔ 200k balanced dataset
(90% training set, 10% validation set)

➔Through quantization, we defined:
quantized fixed point<16,6> inputs
quantized fixed point<8,1> weights
quantized fixed point<8,1> biases

Obtaining a
~97.2% accurate «noise only» classifier

Purity Accuracy

dRICH Data reduction:
HLS4ML ➔ (FPGA) HW Synthesis

Unluckily (at this first stage of development), when moving to FPGA by using the
HLS4ML framework, we were NOT able to produce a MLP DAM model able to cope
with the experiment expected streaming data rate
➔ too many computation resources to unroll (in particular due to the matrix
multiplication between the first two 256 and 128 neurons layers)

➔ To correctly synthetize the model at
200 MHz of operational clock, we used a
REUSE FACTOR = 64, obtaining an
instantiation interval lI = 68 clock cycles

➔ Throughput = 2,94 MHz (<< 100 MHz)

dRICH: Data reduction ➔ Subsectors

Let’s evaluate a 8x8 Grid
as input!

dRICH: Data reduction ➔ Grid Definition

o A single grid pixel sums up informations of
~250 SiPMs (wrt previous ~70)

o Edge subsectors pixels contain less
infomations ➔ this feature can be learnt
by the NN (even in this case?)

dRICH Data reduction:
Input Data

➢ Signal+Background+Noise ➢ «Solo» Noise

dRICH Data reduction:
8x8 Grid Test

➢ Signal+Background+Noise ➢ «Solo» Noise

8x8 Grid ➔ 64 input NN neurons

dRICH Data Reduction Stage on FPGA:
example deployment

FC1 128

dRICH Data Reduction Stage on FPGA:
example deployment

Out (Signal or Bg) 1-bit

Sigmoid

dRICH Data reduction:
HLS4ML ➔ HW Synthesis 8x8 Grid

➔ To correctly synthetize the model at
200 MHz of operational clock, we used a
REUSE FACTOR = 1, obtaining an
instantiation interval lI = 5 clock cycles

➔ Throughput = 40MHz (< 100 MHz)

dRICH Data reduction:
HLS4ML ➔ HW Synthesis 8x8 Grid

STILL LOW, BUT PROMISING!
(can be improved via modifying
part of HLS4ML code)

➔ The possible overhead in the
full II pipepline introduced by
the communication between
DAMs and TP will be considered
in further developments

➔ To correctly synthetize the model at
200 MHz of operational clock, we used a
REUSE FACTOR = 1, obtaining an
instantiation interval lI = 5 clock cycles

➔ Throughput = 40MHz (< 100 MHz)

dRICH Data reduction (8x8 Grid):
Tensorflow training and evaluation

o We trained (offline) the 30 MLP DAM models concatenated to the single MLP TP
model by using 100k Signal+Background+Noise and 100k Noise Only events ➔ 200k
balanced dataset (90% training set, 10% validation set)

o We minimize a typical Binary CrossEntropy loss function in 40 epoch,
backpropagating the result to all the input models

➔ in this way, trained 30 MLP DAM models result
are uncorrelated, coherently with the target
design in which each susbector NN is blind wrt to
the others NN

dRICH Data reduction (8x8 Grid):
Tensorflow training and evaluation

o We trained (offline) the 30 MLP DAM models concatenated to the single MLP TP
model by using 100k Signal+Background+Noise and 100k Noise Only events ➔ 200k
balanced dataset (90% training set, 10% validation set)

o We minimize a typical Binary CrossEntropy loss function in 40 epoch,
backpropagating the result to all the input models

➔Overall model accuracy seems to scale
with the dataset lenght. However, with
these events, we manage to obtain a
~99,3% accurate «noise only» classifier
(wrt 16x16 grid input ~99,9% accurate one)

Accuracy

Purity Accuracy

dRICH Data reduction (8x8 Grid):
Qkeras quantization step

o Starting from the previous model weights, we trained (offline) 30 MLP DAM
quantized models concatenated to a single MLP TP quantized model by using 100k
Signal+Background+Noise and 100k Noise Only events ➔ 200k balanced dataset
(90% training set, 10% validation set)

➔Through quantization, we defined:
quantized fixed point<16,6> inputs
quantized fixed point<16,6> weights
quantized fixed point<16,6> biases

Obtaining a ~96,9% accurate noise classifier
(wrt 16x16 grid input ~97,2% accurate one)

Purity Accuracy

Conclusions

o We sketched a data reduction system designed based on DAM's FPGAs as a
risk-mitigation action to the possible problem of an excessive data bandwidth
requirement from the dRICH to Echelon-0 due to SiPM DCR.

o We showed results of the initial activities we made to proof the design concept.
o The design is based on a distributed Dense MLP NN model, that can reach near-

optimal performance in terms of accuracy (using simulated data), and promising
performance in terms of pipeline throughput.

o Next steps:
o Deploy the distributed NN on two FPGAs already available in our lab (Xilinx Alveo

U200) representing a DAM and the TP, integrating the communication in the
pipeline and assessing its impact on pipeline throughput (and latency).

o Become familiar with the FELIX board HW and FW (we are receiving a FLX-182
on loan from JLab) to start devising the integration of our design in its FW.

o In addition different NN models (CNNs, GNN,…) and data reduction tasks/ideas
(Cherenkov ring detection...) can be explored, taking into account ePIC DAQ
parameters and without altering its data streaming design ("parasitic" mode)

Thanks for your attention!

Contacts:
● cristian.rossi@roma1.infn.it
● alessandro.lonardo@roma1.infn.it

mailto:cristian.rossi@roma1.infn.it
mailto:alessandro.lonardo@roma1.infn.it

BACKUP SLIDES

dRICH Data reduction:
Input Data (Features Definition)

➢ Sig + Bckg + Noise
PHYS SIGNAL + PHYS BACKGROUNG +

dark current SiPM NOISE hits
distribution

APEIRON: overview
APEIRON is a framework developed to offer hardware and
software support for the execution of real-time dataflow
applications on a system composed by interconnected
FPGAs
● Enabling the mapping the dataflow graph of the

application on the distributed FPGA system and
offering runtime support for the execution.

● Allowing users, with no (or little) experience in
hardware design tools, to develop their applications on
such distributed FPGA-based platforms:
○ Tasks are implemented in C++ using High Level

Synthesis tools (Xilinx® Vitis).
○ Lightweight C++ communication API (HAPECOM)

■ Non-blocking send()
■ Blocking receive()

APEIRON enables the scaling of Xilinx® Vitis High Level
Synthesis applications on multiple FPGA interconnected
by the INFN communication IP.

APEIRON for smart TDAQ Systems
Abstract Processing Environment for Intelligent Read-Out systems based
on Neural networks

● Input data streams from several different channels (data sources,
detectors/sub-detectors) recombined through the processing layers
using a low-latency, modular and scalable network infrastructure

● More resource-demanding
NN layers can be
implemented in subsequent
processing layers.

● Classification produced by
the NN in last processing
layer (e.g. pid) will be input
for the trigger
processor/storage online
data reduction stage for
triggerless systems.

APEIRON building blocks:
● INFN Communication IP

INFN is developing the IPs implementing
a direct network that allows low-latency
data transfer between processing tasks deployed
on the same FPGA (intra-node communication)
and on different FPGAs (inter-node communication)

● Host Interface IP: Interface the FPGA
logic with the host through the system
bus.

● Routing IP: Routing of intra-node and
inter-node messages between processing
tasks on FPGA. •

● Network IP: Network channels and
Application-dependent I/O
○ APElink 20 Gbps → 40 Gbps
○ UDP/IP over 1/10 GbE → 25/40/100 GbE
○ ETH port → Xilinx® 10G/25G High Speed

Ethernet Subsystem

APEIRON building blocks:
● Software Stack The APEIRON runtime software stack is

built on top of the Xilinx® XRT one adding
three layers to:

● add the functionalities required to manage
multiple FPGA execution platforms (e.g., program the
devices, configure the IPs, start/stop execution, monitor
the status of IPs, ...);

● reduce the impact of changes in XRT API introduced with
any new version of Vitis on the APEIRON host-side
applications;

● decouple the APEIRON software stack from the specific
platform, easing the future porting of the framework to
different platforms/vendors.

Apeirond is a persistent daemon used to manage multiple
access request from user apps to the board.
Using the network socket exposed by apeirond modules, the
supervisor can write commands and read status of the
different instances of the APEIRON framework running in
each node, allowing the user to have a complete overview of
the multiple FPGA execution platform

APEIRON: FPGA bitstream generation
● The HLS task must have a generic interface,

implementation is free
● A YAML configuration file is used to describe

the kernels interconnection topology, specifying
how many input/output channels they have

Adaptation toward/from IntraNode ports of the
Routing IP is done by the automatically generated
Aggregator and Dispatcher kernel templates.

void example_task(

[list of optional kernel specific

parameters], message_stream_t

message_data_in[N_INPUT_CHANNELS],

message_stream_t

message_data_out[N_OUTPUT_CHANNELS])

APEIRON performance
(Communication IP: 256 bit datapath @200MHz)

Latency
DDR+sync(ns) BRAM(ns)

Intra-node (localtrip) 533
213

Inter-node (roundtrip) 1065
768 Bandwidth

DDR+sync(MB/s) BRAM(MB/s)
Intra-node (loopback) 3938

5967
Inter-node (oneway) 3938

APEIRON applications:
● FIPLib-multiFPGA

FPGA Image Processing Library ⇒ multi-FPGA implementation via APEIRON

● Developed by ENEA in C++, it employs the
Vitis HLS flow to construct the library's
kernels for the execution of image processing
algorithms.

● FIPLib encompasses nearly 70 functionalities,
conceived with a streaming behavior

● On a multi-FPGA setup, we were able to split
the overall image processing by
implementing a single RGB kernel on each
node
⇒ increased internal datapath to 32B,
avoiding FPGA resource limitation

APEIRON applications:
● FIPLib-multiFPGA

FPGA Image Processing Library ⇒ multi-FPGA implementation via APEIRON

● Implementing FIPLib HLS
kernels as APEIRON tasks
means changing the
interface of each of them
to cope with the standard
required by the framework
to compile the entire
project and to generate
the bitstream
⇒ use of HAPECOM C++
communication API

APEIRON applications:
● FIPLib-multiFPGA

APEIRON applications:
● RAIDER

Real-time AI-based Data analytics on hEteRogeneous distributed systems

● High throughput online streaming processing on
multi-FPGA ⇒ number of Cherenkov rings prediction
on the stream of events generated by the RICH detector
in the CERN NA62 experiment at a rate of about 10 MHz,
using multiple CNN_kernel replica.

● Lightweight CNN model deployed on Xilinx Alveo U280
FPGA (limited resource usage)
⇒ receives as input compressed
representation of the
original event in form of
B&W 16x16 image
(via imagifier kernel)

APEIRON applications:
● RAIDER

x100

x20

FPGA overview

The basic structure of an FPGA is
composed of the following elements:
● Look-up table (LUT): This

element performs logic
operations

● Flip-Flop (FF): This register
element stores the result of the
LUT

● Wires: These elements connect
elements to one another, both
logic and clock

● Input/Output (I/O) pads: These
physically available ports get
signals in and out of the FPGA

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59

