

Neural Compression for sPHENIX sparse TPC Data

Yi Huang, Yihui "Ray" Ren, Yeonju Go, Xihaier Luo, Shuhang Li, Thomas Marshall, Joseph D. Osborn, Christopher Pinkenburg, Evgeny Shulga, Shinjae Yoo, Byung-Jun Yoon, Jin Huang (PI) Presenter: Yihui "Ray" Ren, Al-CoDesign Group Leader, BNL

Series and the series of the s

SRO XII, University of Tokyo, Dec. 2-4, 2024

Relativistic Heavy Ion Collider, future Electron-Ion Collider (2.4 miles in circumference)

Statesting

12022

in the second

National Synchrotron Light Source II

NSRL

FRIS

LINAC

R

SPHENIX at **BNL**

Data taking began last year! High-precision tracking system + Hermetic Electromagnetic & Hadronic calorimeters

Time projection Chamber (TPC)

A TPC is composed of 48 layers of rectangular grid of sensor nodes. It acts as a camera capturing 3D particle trajectories.

- three layer groups, 16 layers each
- two sides, divided by the transverse plane passing the collision point
- 12 sectors, 30 degree each

sPHENIX Time Projection Chamber 100 Hz ZDC, MBD Prescale: 2, HV: 4.45 kV GEM, 45 kV CM, X-ing Angle: 2 mrad 2023-06-23, Run 10931 - EBDC03 reference frame 89 Au+Au sqrt(s_{NN})=200 GeV

National Laboratory SRO XII, University of Tokyo, Dec. 2-4, 2024. Presenter: Yihui Ren (BNL)

Neural Auto-Encoder

- A typical Auto-Encoder uses an Encoder network to compress the data into "code"; and a Decoder network to reconstruct the original input.
- The voxel distribution:
 - long-tailed (skewed)
 - sparse (many zero values)
 - zero-suppressed (discontinued)
 - 10-bit integer (saturated)

Very Challenging for a regular auto-encoder!

Bicephalous Convolutional Auto-Encoder (BCAE) leg. Decoder

- A dedicated Segmentation • decoder to determine whether a voxel has been zero-suppressed.
- Integrate a transformation function τ into the network:

 $\lim_{\to} 10^4$

 10^{2}

250

← gap →

750 1,000

2-4, 2024. Pr

2 Ω

500

ADC value

 $\tau = \log(x - 64)/6$ for non-zero values. 10^{6}

0.03

0.02

0.01

0

density

 $\mathcal{T}(ADC \text{ value})$

Seg. loss \mathcal{L}_s Focal cross

entropy

Reg. loss \mathcal{L}

Conv/deConv

Activation

Normalizatior

ResBlock

Mean squared

error

Conv/deCon

Activatio

Vormalizatio

Conv/deCon

Activatio

Normalizatio

Regression output × mask

Original

Decompressed

Results

- Compression Ratio:
 1:27
- Mean-Squared Error (MSE): 218.44

Brookhaven National Laboratory SRO XII, University of Tokyo, Dec. 2-4, 2024. Presenter: Yihui Ren (BNL)

Other Lossy Compression Algorithms

We identified three conventional lossy compression algorithms, which were mainly designed for dense data matrices such as in fluid dynamic simulations.

- **MGARD**: MultiGrid adaptive reduction of data. https://github.com/CODARcode/MGARD
- **SZ**: Error-bounded lossy compressor. https://github.com/szcompressor/SZ
- **ZFP**: Compressor for integer and floating-point data stored in multidimensional arrays. https://github.com/LLNL/zfp

Results

- Conventional methods allow users to change compression ratio.
- Our model has better compression ratio and lower MSE. (good balance)
- Conventional methods do not require "training".

	Compr. ratio↑	$MSE\downarrow$	$\log MAE \downarrow$	PSNR ↑
MGARD	27	626.28	1.213	3.223
SZ	24	369.69	0.302	3.452
ZFP	19	219.48	0.267	3.678
CAE	27	227.61	0.349	3.703
BCAEwoT	27	230.59	0.193	3.706
BCAE	27	218.44	0.185	3.724

Results

- Conventional methods allow users to change compression ratio.
- Our model has better compression ratio and lower MSE.
- Recover entry value distributions (histogram)

Huang, Y., Ren, Y., Yoo, S., & Huang, J. (2021, December). Efficient data compression for 3d sparse TPC via bicephalous convolutional autoencoder. In *2021 20th IEEE International Conference on Machine Learning and Applications (ICMLA)* (pp. 1094-1099). IEEE. <u>arxiv:2111.05423</u>

Jin Huang (BNL) "SRO for sPHENIX TPC and Real-time AI" in SRO XI

Brookhaven[®] SRO XII, University of Tokyo, Dec. 2-4, 2024. Presenter: Yihui Ren (BNL)

2D Encoder and Decoder

- Smaller, faster encoder
- Bulkier, slower decoder
- Can stronger decoder compensate for a weaker encoder?

original BCAE versus BCAE-2D

model	MAE↓	PSNR ↑	Precision ↑	Recall ↑	Encoder size↓	Compr. Ratio \downarrow
BCAE	0.198	9.923	0.878	0.861	201.7k	27.041
BCAE-2D	0.152	11.726	0.906	0.907	169.0k	31.125

original BCAE versus BCAE-2D

model	MAE↓	PSNR ↑	Precision ↑	Recall ↑	Encoder size↓	Compr. Ratio \downarrow
BCAE	0.198	9.923	0.878	0.861	201.7k	27.041
BCAE-2D	0.152	11.726	0.906	0.907	169.0k	31.125
BCAE++	0.112	14.325	0.934	0.936	226.2k	31.125

From BCAE to BCAE

- 1. 3D convolution
- 2. Pad (16, 192, 249) to (16, 192, 256) for easy halving and an increased compression ratio
- 3. Remove normalization

- Better reconstruction
 performance
- Still slow

original BCAE versus BCAE-2D

model	MAE↓	PSNR ↑	Precision ↑	Recall ↑	Encoder size↓	Compr. Ratio \downarrow
BCAE	0.198	9.923	0.878	0.861	201.7k	27.041
BCAE-2D	0.152	11.726	0.906	0.907	169.0k	31.125
BCAE++	0.112	14.325	0.934	0.936	226.2k	31.125
BCAE-HT	0.138	12.376	0.916	0.915	9.8k	31.125

From BCAE to BCAE-HT

- 1. 3D convolution
- 2. Pad (16, 192, 249) to (16, 192, 256) for easy halving and an increased compression ratio
- 3. Remove normalization
- 4. Much smaller intermediate output channels for higher throughput

- Slightly better reconstruction performance
- Super small model size
- Higher throughput

original BCAE versus BCAE-2D

Throughput comparison

12/2/24

- Full: encode with float 32, save code as float 16, decode with float 32
- Half: encode with float 16, save code as float 16, decode with float 32

model	mode	MAE	precision	recall
BCAE-2D	Full	0.151937	0.905469	0.906916
	Half	0.151965	0.905326	0.907 <mark>050</mark>
BCAE++	Full	0.112 <mark>3</mark> 47	0.933 <mark>8</mark> 17	0.935 <mark>779</mark>
	Half	0.112 <mark>3</mark> 42	0.933 <mark>8</mark> 52	0.935 <mark>7</mark> 41
BCAE-HT	Full	0.138 <mark>443</mark>	0.915 <mark>8</mark> 91	0.914562
	Half	0.138441	0.915780	0.914701

THROUGHPL

Throughput comparison

Measured on A6000

Huang, Y., Ren, Y., Yoo, S., & Huang, J. (2023, November). Fast 2D Bicephalous Convolutional Autoencoder for Compressing 3D Time Projection Chamber Data. In *Proceedings of the SC'23 Workshops of The International Conference on High Performance Computing, Network, Storage, and Analysis* arxiv:2310.15026

Question 1:

Can we have better performance and better throughput?

Question 2:

Can we have variable compression ratio depending on occupancy?

Question 3:

Can we have variable throughput? Sparser the data, the less compute

Brookhaven⁻ National Laboratory SRO XII, University of Tokyo, Dec. 2-4, 2024. Presenter: Yihui Ren (BNL)

Q

Brookhaven⁻ SRO XII, University of Tokyo, Dec. 2-4, 2024. Presenter: Yihui Ren (BNL)

BCAE-VS: <u>Bicephalous Convolutional Autoencoder</u> with <u>Variable ratio Compression for Sparse input</u>

Locate the most valuable signals, and compress by down-selecting the signals

Brookhaven[®] SRO XII, University of Tokyo, Dec. 2-4, 2024. Presenter: Yihui Ren (BNL)

Reconstruction Accuracy

Brookhaven⁻ National Laboratory SRO XII, University of Tokyo, Dec. 2-4, 2024. Presenter: Yihui Ren (BNL)

Variable Compression Ratio and Throughput as Function of Occupancy throughput = number of TPC wedges processed by one GPU per second. GPU we used is NVIDIA 6000 ADA.

Brookhaven[®] National Laboratory[®] SRO XII, University of Tokyo, Dec. 2-4, 2024. Presenter: Yihui Ren (BNL)

Brookhaven⁻ SRO XII, University of Tokyo, Dec. 2-4, 2024. Presenter: Yihui Ren (BNL)

		reconstruction performance					efficiency	
model	$\operatorname{comp.}_{\operatorname{ratio}}$	$L_1\downarrow$	$L_2\downarrow$	$\mathrm{PSNR}\uparrow$	$\text{recall} \uparrow$	precision \uparrow	encoder size	throughput \uparrow
BCAE-2D	31	.152	.862	20.6	.907	.906	169k	9.6k
BCAE-HT (3D)	31	.138	.781	20.8	.916	.915	9.8k	9.6 k
BCAE++ (3D)	31	.112	.617	21.4	.936	.934	226k	3.2k
BCAE-VS	34	.028	.089	26.0	.988	.996	382	5.6k

Huang, Y., Go, Y., Huang, J., Li, S., Luo, X., Marshall, T., ... & Yoon, B. J. (2024). Variable Rate Neural Compression for Sparse Detector Data. *arXiv preprint* <u>arXiv:2411.11942</u>.

Brookhaven National Laboratory SRO XII, University of Tokyo, Dec. 2-4, 2024. Presenter: Yihui Ren (BNL)

Summary

- Bicephalous Convolutional Auto-encoder (BCAE) for sparse TPC data
- Faster BCAE-2D with Encoder-Decoder tradeoff
- Variable compression rate and computation with BCAE-VS.
- (Future) Improve BCAE-VS in low occupancy region
- (Future) Improve throughput of BCAE-VS on GPU and other hardware
- (Future) noise rejection, tracking efficiency, etc.

Source Code:

- BCAE https://github.com/BNL-DAQ-LDRD/NeuralCompression
- BCAE-2D <u>https://github.com/BNL-DAQ-LDRD/NeuralCompression_v2</u>
- BCAE-VS <u>https://github.com/BNL-DAQ-LDRD/NeuralCompression_v3</u>

Summary

- Bicephalous Convolutional Auto-encoder (BCAE) for sparse TPC data
- Faster BCAE-2D with Encoder-Decoder tradeoff
- Variable compression rate and computation with BCAE-VS.
- (Future) Improve BCAE-VS in low occupancy region
- (Future) Improve throughput of BCAE-VS on GPU and other hardware
- (Future) noise rejection, tracking efficiency, etc.

Feel free to try on your streaming detector data! Source Code:

- BCAE <u>https://github.com/BNL-DAQ-LDRD/NeuralCompression</u>
- BCAE-2D <u>https://github.com/BNL-DAQ-LDRD/NeuralCompression_v2</u>
- BCAE-VS <u>https://github.com/BNL-DAQ-LDRD/NeuralCompression_v3</u>

Thank you! ありがとうございます

Yihui "Ray" Ren (yren@bnl.gov)

Yi Huang, Yihui "Ray" Ren, Yeonju Go, Xihaier Luo, Shuhang Li, Thomas Marshall, Joseph D. Osborn, Christopher Pinkenburg, Evgeny Shulga, Shinjae Yoo, Byung-Jun Yoon, **Jin Huang** (PI)

Prookhaven⁻ SRO XII, University of Tokyo, Dec. 2-4, 2024. Presenter: Yihui Ren (BNL) SRO XII, University of Tokyo, Dec. 2-4, 2024. Presenter: Yihui Ren (BNL)

BCAE-VS

<u>Variable ratio</u> Compression for <u>Sparse input</u>

SRO XII, University of Tokyo, Dec. 2-4, 2024. Presenter: Yihui Ren (BNL) SRO XII, University of Tokyo, Dec. 2-4, 2024. Presenter: Yihui Ren (BNL)

Sanity Check with lossless compressions

- Compare to lossless compression tools. More than twice compression ratio.
- Compressed code of BCAE can not be compressed further.

How is our model comparing to other lossy compression algorithms?

Brookhaven[•]

Real-time Al accelerator

Gpuserver0 upgrade yesterday L40S removed for RMA

Three AI chips:

- Groq: TPU based
- UntetherAI: INT8 optimizes
- Tenstorrent: RISC-V cores

More photos:

https://photos.app.goo.gl/z3An Nhfrd4bqZTeN6

jinhuang@gpuserver0:~\$ sudo lspci | grep cc 41:00.0 Processing accelerators: Xilinx Corporation Device d004 61:00.0 Processing accelerators: Xilinx Corporation Device d00c 81:00.0 Processing accelerators: Device 1e67:0004 (rev 01) a1:00.0 Processing accelerators: Groq TSP100 Tensor Streaming Processor c1:00.0 Processing accelerators: Device 1e52:401e (rev ff) gpuserver0.sphenix.bnl.gov

SRO XII, University of Tokyo, Dec. 2-4, 2024. Presenter: Yihui Ren (BNL) Jin Huang, Ray Ren

Summary

- Bicephalous Convolutional Auto-encoder (BCAE) for sparse TPC data
- Faster BCAE-2D with Encoder-Decoder tradeoff
- Variable compression rate and computation with BCAE-VS.
- (Future) Improve BCAE-VS in low occupancy region
- (Future) Improve throughput of BCAE-VS on GPU and other hardware
- (Future) noise rejection, tracking efficiency, etc.

Source Code:

- BCAE https://github.com/BNL-DAQ-LDRD/NeuralCompression
- BCAE-2D <u>https://github.com/BNL-DAQ-LDRD/NeuralCompression_v2</u>
- BCAE-VS <u>https://github.com/BNL-DAQ-LDRD/NeuralCompression_v3</u>

